Application Discovery over Broadband
Contents

Introduction .. 6
1 Scope ... 6
2 References ... 6
2.1 Normative references .. 6
2.2 Informative references .. 7
3 Definitions and abbreviations .. 8
3.1 Definitions ... 8
3.2 Abbreviations .. 8
4 Overview (informative) .. 8
5 HbbTV® Application Discovery over Broadband .. 10
5.1 Introduction .. 10
5.2 Discovering broadcaster AIT servers ... 10
5.3 Service Identification .. 12
5.3.1 Service Identification in the presence of DVB Service Information .. 12
5.3.2 Service Identification using ATSC 3 watermarks .. 12
5.4 HbbTV DNS FQDN Construction ... 12
5.4.1 HbbTV DNS FQDN Construction in the presence of DVB Service Information 12
5.4.2 HbbTV DNS FQDN Construction using ATSC 3 watermarks .. 13
5.5 Resolution of Authoritative FQDN ... 13
5.6 AIT retrieval ... 13
5.6.1 AIT retrieval in the presence of DVB Service Information ... 13
5.6.2 AIT retrieval when ATSC 3 watermarks are used ... 14
5.6.3 Common AIT retrieval requirements ... 14
6 Service and application model ... 14
6.1 Introduction ... 14
6.2 Priority between application discovery mechanisms .. 14
6.2.1 Services received via DVB transmission ... 14
6.2.2 Services received via HDMI ... 15
6.2.3 Services received via other input sources ... 15
6.3 Watermark states and transitions .. 15
6.3.1 State machine .. 15
6.3.2 Verification of video watermarks ... 23
6.3.3 Monitoring for watermarks ... 23
6.4 Application lifecycle when controlled by watermarks .. 23
6.4.1 Introduction ... 23
6.4.2 Managing the HbbTV application lifecycle ... 23
6.4.2.1 Introduction .. 23
6.4.2.2 Acquire and Process an AIT ... 25
6.4.2.3 AIT Validity .. 26
6.4.2.4 Watermark media timeline ... 26
6.4.2.4.1 Introduction .. 26
6.4.2.4.2 Initialising the watermark media timeline ... 27
6.4.2.4.3 Determining the Media Time of watermarked content .. 29
6.4.2.4.4 Maintaining synchronisation to the Watermark Media Timeline ... 29
6.4.3 Loss of watermark ... 29
6.4.4 Transitioning between HbbTV Application types .. 30
7 Formats and protocols .. 30
7.1 Signalling of applications .. 30
7.1.1 XML AIT for Broadcast-related broadband application discovery .. 30
7.1.2 XML AIT Extensions... 31
7.2 Watermark formats .. 36
7.2.1 Introduction ... 36
7.2.2 ATSC 3 Watermarks ... 36
C.1 Application discovery in the presence of DVB service information .. 52
C.2 Application discovery using ATSC 3 watermarks .. 54
Annex D (informative): Change History .. 58
History ... 59
Introduction

The versions of ETSI TS 102 796 [1] published to date rely on signalling in the broadcast to start broadcast-related applications, through the Application Information Table (AIT). The present document defines methods for discovery of broadcast-related HbbTV® services via a broadband internet connection for circumstances when the AIT and related signalling via the broadcast network is not available to the HbbTV® terminal. The discovery methods rely on retrieving or extracting a unique identifier for a broadcast channel and then starting a discovery process to find a server that can be contacted to retrieve an AIT over the broadband connection. The broadband-retrieved AIT would only be used if no AIT is available in the broadcast channel. The discovery method relies on the Internet's DNS system. In simplified form, the process works as follows:

- Extract a unique identifier from the broadcast channel.
- With the unique identifier, perform a DNS query to find (resolve) the AIT server.
- Ask the AIT server for an AIT that matches the broadcast channel.
- Using the AIT, retrieve the HbbTV® application.

The present document is targeted at two main deployment scenarios:

- HbbTV terminals connected to a DVB network which does not carry the HbbTV AIT. In this case the unique identifier is based on DVB service information.
- HbbTV TV sets connected via HDMI to a STB that is in turn connected to the DVB network. In this case the unique identifier is based on information carried in the video and audio content (referred to as a ‘watermark’ in the present document). This method has the additional capability of enabling discovery of a media timeline and stream events. This capability can also be employed when a terminal is connected to a DVB network that does not carry timeline or stream events.

Both discovery methods can also be used in other deployment scenarios, for example the watermark can be used for application discovery from a DVB broadcast and the service information approach could be adapted for use with IPTV or live OTT solutions using proprietary service discovery.

An AIT retrieved over the broadband connection and the Application referenced in that AIT are not necessarily the same as the AIT that would be available in the broadcast and the associated HbbTV® Application. Generally, when no AIT is available in the broadcast, then neither would be event signalling, and the provider of the application may want to resort to alternative methods for providing event signalling to the HbbTV® application. When discovery using DVB is employed, the application may have to be modified to receive events in another manner (e.g. via broadband). When discovery using watermarking is employed, stream events may be delivered via the watermark.

The discovery method that employs DVB service information does not allow for application changes over time - e.g. when the program changes. When this method is employed, the application will have to include the necessary logic. Entities relying on the functionality provided in the present document are advised to consider these limitations when writing their applications.

1 Scope

The present document augments clause 6 of ETSI TS 102 796 [1], which states that broadcast-related applications are signalled as part of the broadcast. It defines a method for discovery of HbbTV® applications in settings where AIT signalling via the broadcast network is not available to the terminal. In this situation, an HbbTV® terminal may discover broadcast-related HbbTV® services via a broadband internet connection.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 102 796: "Hybrid Broadcast Broadband TV".

NOTE 1: This document is also referred to as the Main HbbTV® Specification.

NOTE 2: Including the latest errata as published on http://hbbtv.org/resource-library/#specifications.

[2] ETSI TS 102 796 (V1.4.1): "BROADCAST Hybrid Broadcast Broadband TV".

NOTE: Including the latest errata as published on http://hbbtv.org/resource-library/#specifications.

[5] ETSI TS 102 034 (V1.5.1): "Digital Video Broadcasting (DVB); Transport of MPEG-2 TS Based DVB Services over IP Based Networks".

[6] ETSI TS 102 809 (V1.2.1): "Digital Video Broadcasting (DVB); Signalling and carriage of interactive applications and services in Hybrid Broadcast/Broadband environments".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] ETSI TS 103 270 (V1.1.1): "RadioDNS Hybrid Radio; Hybrid lookup for radio services".

[i.2] ETSI TS 103 286-2 (V1.2.1): "Digital Video Broadcasting (DVB); Companion Screens and Streams; Part 2: Content Identification and Media Synchronization"
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ETSI TS 102 796 [1] and the following apply:

AIX server: server that provides broadcast-related AIT(s) over broadband

Audio Watermark Segment: VP1 Audio Watermark Segment as defined in clause 5.2.5 of ATSC A/336 [9]

authoritative FQDN: internet domain for a (HbbTV®) service provider

discovered AIX: broadcast related AIX retrieved according to the present document

HbbTV DNS FQDN: internet domain constructed only for the purpose of querying DNS

interval_field: The field in the ATSC A/336 VP1 payload containing the Interval Code.

Interval Code: A value that identifies the interval of content in which the VP1 payload value is embedded

Query Flag: The value of the query_flag field in an instance of the VP1 Payload as defined in ATSC A/336 [9].

Server Code: A value that identifies a server which acts as the starting point for acquisition of supplementary content.

server field: The field in the ATSC A/336 VP1 payload containing the Server Code

Video Watermark Segment: VP1 Video Watermark Segment as defined in clause 5.1.7 of ATSC 336 [9]

Watermark Segment: An Audio Watermark Segment or a Video Watermark Segment

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI TS 102 796 [1] and the following apply:

TTL time to live

4 Overview (informative)

The methodology is modelled after RadioDNS [i.1], using certain parameters provided in the broadcast for the identification of services. These could be digital parameters extracted from DVB Service Information, e.g. DVB-SI [3], or parameters encoded in a digital watermark that is inserted for the purpose of enabling this discovery method. The present document defines operation either in the presence of DVB Service Information or, alternatively, in the presence of specified audio and/or video watermarks; other operation modes may be added in a future version.

The discovery method allows broadcasters to uniquely associate an AIT server with their channel and comprises discovering an authoritative FQDN for an AIT server, using DNS queries to hbbtvdns.org, a root domain name server.
NOTE: It is possible for local markets to define a market-specific alternative to hbbtvdns.org; this is not further addressed in the present document.

The protocol for discovery and retrieval of an AIT for a single service follows a number of steps, as outlined below. Figure 1 illustrates the steps using the example of DVB-based parameters and Figure 2 illustrates the steps using the example of watermark-based parameters.

- The terminal queries a DNS recursive resolver using an HbbTV DNS FQDN constructed from information present in the broadcast (1). A DNS recursive resolver known to the terminal returns the authoritative FQDN for that service (2), acquiring the mapping (if available) from the root domain name server if it is not locally cached.

- Either 1) When the terminal is receiving a DVB broadcast, there is no AIT in the broadcast signal or 2) When the terminal is presenting video from HDMI and receives a watermark as defined in the present document; then the terminal retrieves an XML-encoded AIT from the server using a URL constructed from authoritative FQDN (3 and 4). AIT retrieval includes acquisition of the AIT server address by the terminal from a DNS recursive resolver, which in turn acquires it (if available) from the broadcaster’s Authoritative FQDN DNS root if it is not locally cached.

- The terminal uses the AIT for that broadcast service and retrieves the application (5 and 6).
5 HbbTV® Application Discovery over Broadband

5.1 Introduction

This clause defines a method for discovery and signalling of broadcast-related applications, which are discovered and signalled via broadband, instead of being signalled as part of the broadcast channel as defined in clause 7.2.3.1 of ETSI TS 102 796 [1].

The structure of this clause reflects the fact that the present document defines generic methods as well as instantiations that map on specific ways in which identifiers can be extracted and used. The present version defines such a mapping for a terminal that receives a DVB signal and one that relies on watermarking, to enable operation of terminals that do not receive the digital broadcast signal, for instance when the terminal is connected to a set top box with an HDMI cable. Mappings for non-DVB digital broadcasts can be added based on the HbbTV IPTV specification TS 103 555 [1.7] or platform specific integration.

Terminals shall implement all of the mandatory requirements in the ETSI TS 102 796 [1], except where explicitly stated otherwise in the present document.

5.2 Discovering broadcaster AIT servers

The terminal shall attempt to discover broadcasters’ AIT servers according to the process as described below. This process is independent from service selection by the user and shall be executed in the following cases:
- For each service in the terminal's channel list (see TS 102 796 [1] and the OIPF DAE specification [4]) and for each server_field in the server field cache (if application discovery using watermarking is supported), when the terminal is powered on. These attempts shall be made in alphabetical order by HbbTV DNS FQDN.
- For any service where the terminal detects a change in the service name.
- For any service that is added to the terminal's channel list.
- For every service in the terminal’s channel list, when the terminal's country setting is changed.
- For every server field value, when it is added to the server field cache.

Discovery of an AIT server shall be performed in the following way:

- The Authoritative FQDN shall be resolved as specified in clause 5.5, using Service Identification as specified in clause 5.3 and the HbbTV DNS FQDN construction as specified in clause 5.4.

The following caching rules shall apply to DNS resolution performed for resolution of the Authoritative FQDN as specified in clause 5.5:

- DNS resource records shall be cached by the terminal in accordance with the resolver caching rules of IETF RFC 1034 [10] and IETF RFC 1035 [11], as amended by the present clause.
- Cached DNS resource records shall not be retained over a power cycle.
- Terminals shall be capable of simultaneously caching the DNS resource records of all services in the channel list and, if the terminal supports application discovery using watermarking, all server fields in the server_field cache as defined below.
- If a DNS resource record retrieval returns a name error (i.e. the record does not exist), the terminal shall cache this negative response with a TTL of 24 hours.
- Terminals shall refresh each cached DNS resource record once it has been stored in the cache for a number of seconds equal to the TTL associated with the DNS record (as defined in clause 5.1 of IETF RFC 1035 [11]), independently of and asynchronous to AIT retrieval.

NOTE: It is understood that terminals typically incorporate a DNS stub resolver that does not perform caching and rely on a remote recursive resolver identified via DHCP for caching. Terminals are not expected to implement a recursive resolver for the purpose of complying with these requirements. The DNS caching behaviour is expected to be included as part of a terminal implementation that employs a stub resolver.

The server field cache enables the terminal to populate its DNS cache with the records associated with previously viewed watermarked services upon power-up. Terminals supporting application discovery based on watermarking shall apply the following caching rules to server_field values detected from watermarks:

- server_field values detected from watermarks shall be cached by the terminal (the "server field cache").
- The server field cache shall be retained across power cycles and erased only upon user request (e.g. via a terminal feature such as "restore factory settings" or "delete stored information"). To ensure that the cache is retained when power is removed from the terminal entirely, terminals shall write changes to server field cache data to persistent storage within 5 minutes of the terminal being put into standby and should write changes to server field cache data to persistent storage soon after that data has been set or modified, e.g. within 30 seconds.
- Terminals shall be capable of storing 200 server_field values in the server field cache and the cached values shall not expire. However, if the cache does not have space to store a new server_field value, it shall replace the oldest (i.e. least recently added) entry in the cache.
5.3 Service Identification

5.3.1 Service Identification in the presence of DVB Service Information

For terminals supporting application discovery over broadband using DVB Service Information, identification of a service shall be provided by a combination of DVB service parameters. The parameters are defined in table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
<td>3-character country code as specified by the Configuration.countryId property in Open IPTV Forum Release 2 specification [4].</td>
<td>3-char string</td>
</tr>
<tr>
<td>servicename</td>
<td>The DVB service name bytes from the service_name field in the service_descriptor in the SDT for this service as defined in ETSI EN 300 468 [3], encoded as a string of two digit hex bytes.</td>
<td>Up to 256 two digit hex bytes</td>
</tr>
<tr>
<td>onid</td>
<td>The original network id for this service as defined in ETSI EN 300 468 [3] encoded as a string of two digit hex bytes.</td>
<td>4-digit lower case hex string</td>
</tr>
</tbody>
</table>

In the case of using the present document in the context of IPTV or OTT networks, mappings of DVB-SI and equivalent information can be done based on the HbbTV IPTV specification [i.7] or via platform specific integration.

5.3.2 Service Identification using ATSC 3 watermarks

For watermarks whose payload is according to clause 5.2.3 of ATSC A/336 [9], services are identified using the server_field (Server Code) from the vp1_payload structure.

5.4 HbbTV DNS FQDN Construction

5.4.1 HbbTV DNS FQDN Construction in the presence of DVB Service Information

The terminal shall construct a HbbTV DNS FQDN as follows:

<onid>.<servicename>.<country>.dvb.hbbtvdns.org

The terminal shall extract and re-encode all the bytes from the service_name field in the service_descriptor in the SDT as transmitted including any optional character selection byte. No character set processing or translation shall be performed. This shall be done regardless of what character sets a terminal supports.

Some examples of HbbTV DNS FQDNs constructed from broadcast parameters are shown in table 2.

<table>
<thead>
<tr>
<th>Country</th>
<th>Servicename</th>
<th>Onid</th>
<th>HbbTV DNS FQDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLD</td>
<td>154e504f2031 ("NPO 1" with the 0x15 indicating UTF-8 character encoding as defined by ETSI EN 300 468 [3])</td>
<td>1e36</td>
<td>1e36.154e504f2031.NLD.dvb.hbbtvdns.org</td>
</tr>
<tr>
<td>DEU</td>
<td>10415244 ("ARD" with the 0x10 indicating ISO/IEC 8859-5 character encoding as defined by ETSI EN 300 468 [3])</td>
<td>2345</td>
<td>2345.10415244.DEU.dvb.hbbtvdns.org</td>
</tr>
</tbody>
</table>
5.4.2 HbbTV DNS FQDN Construction using ATSC 3 watermarks

For watermarks whose payload is according to clause 5.2.3 of ATSC A/336 [9], the terminal shall construct an HbbTV DNS FQDN as follows;

<server_field>.a336.watermark.hbbtvdns.org

The server_field from the most recently detected audio watermark shall be used, except in the Verified video watermark detected only state (see Table 5) where the server_field from the most recently detected video watermark payload shall be used. The bits of the server_field shall be encoded as a hexadecimal number without leading zeros and with 10 to 15 being represented by lower case ‘a’ through ‘f’.

EXAMPLE: A server code of binary 001 0010 1011 0100 1101 1000 is encoded as 12b4d8

Only the large_domain syntax is required to be supported.

5.5 Resolution of Authoritative FQDN

The terminal shall perform a DNS request using the HbbTV DNS FQDN, to acquire the Authoritative FQDN. The response to this request contains a single CNAME record [11] containing the Authoritative FQDN of the service provider. If no CNAME is returned (a “negative response”), then a broadband-discoverable AIT service has not been registered.

EXAMPLE: Consider a TV service identified by the HbbTV DNS FQDN:
1e36.154e504f2031.NLD.dvb.hbbtvdns.org

A DNS lookup will yield the following lookup result:

1e36.154e504f2031.NLD.dvb.hbbtvdns.org. 86400 IN CNAME npol.hbbtv.npo.nl.

Therefore, for this service, the Authoritative FQDN is:

npol.hbbtv.npo.nl

5.6 AIT retrieval

5.6.1 AIT retrieval in the presence of DVB Service Information

The terminal shall retrieve the AIT by performing an HTTPS GET where the TLS client connection request includes the Authoritative FQDN in the Server Name Indication (SNI) as specified in RFC 6066 [7] request to the following address:

https://<domain-name>/xml.sitx?onid=<onid>&network=<network>&servicename=<servicename>&sid=<sid>

The parameters that the terminal shall provide are shown in table 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain-name</td>
<td>The Authoritative FQDN obtained as specified in clause 5.5 and cached as specified in clause 5.2.</td>
<td>String</td>
</tr>
<tr>
<td>onid</td>
<td>Original network ID, as provided in the SDT from DVB-SI, ETSI EN 300 468 [3].</td>
<td>4-digit lower case hex string</td>
</tr>
<tr>
<td>network</td>
<td>Identifies the broadcast delivery system. Values correspond to the permitted values for the idType property of the Channel class as defined in clause 7.13.11 of the OIPF DAE specification [4].</td>
<td>String</td>
</tr>
<tr>
<td>servicename</td>
<td>See table 1.</td>
<td>See table 1</td>
</tr>
<tr>
<td>sid</td>
<td>Service ID, as used in DVB-SI, ETSI EN 300 468 [3].</td>
<td>4-digit lower case hex string</td>
</tr>
</tbody>
</table>

EXAMPLE: Consider a DNS record as provided by DNS:
5.6.2 AIT retrieval when ATSC 3 watermarks are used

The terminal shall retrieve the AIT by performing an HTTPS GET request to the following address:

https://<domain-name>/xml.aitx?server_field=<server_field>&interval_field=<interval_field>

The <domain-name> shall be the Authoritative FQDN obtained as specified in clause 5.5 and cached as specified in clause 5.2. The server_field and interval_field from the most recently detected audio watermark payload shall be used, except in the Verified video watermark detected only state (see Table 5) where the server_field and interval_field from the most recently detected video watermark payload shall be used. The bits of the server_field and interval_field shall be encoded as hexadecimal numbers without leading zeros and with 10 to 15 being represented by lower case ‘a’ through ‘f’.

EXAMPLE: A server code of binary 001 0010 1011 0100 1101 1000 is encoded as 12b4d8

5.6.3 Common AIT retrieval requirements

When performing AIT retrieval according to clauses 5.6.1 or 5.6.2, the following requirements shall apply:

1) The requirements of clause 7.3.2.5 of ETSI TS 102 796 V1.4.1 [2] shall apply to AIT retrieval regardless of what is ETSI TS 102 796 [1].

2) The response to this request shall have the following MIME type: application/vnd.dvb.ait+xml and an XML AIT as payload. The AIT is contained in a single application discovery record.

6 Service and application model

6.1 Introduction

This clause defines procedure for use by terminals to perform application discovery, signalling, and lifecycle management of applications via broadband. These procedures include:

- Priority between application discovery from broadcast AITs, DVB Service Information, and watermarks in scenarios where multiple of these mechanisms is applicable (clause 6.2);
- Application lifecycle management when application discovery using DVB Service Information is employed (clause 6.2.1);
- Monitoring for watermarks and a state machine for watermarking processing (clause 6.3);
- Application lifecycle management when application discovery using watermarking is employed (clause 6.4).

6.2 Priority between application discovery mechanisms

6.2.1 Services received via DVB transmission

Broadcast AIT reception as defined in TS 102 796 [1], application discovery over broadband using DVB Service Information and application discovery over broadband using watermarks (both the latter as defined in the present document) are all applicable techniques for application discovery. When more than one of these techniques is supported by the terminal, more than one technique may be initiated simultaneously for application discovery.

When a terminal that employs application discovery over broadband changes to a service, if an AIT server is cached for that service, the terminal shall attempt to retrieve the Discovered AIT as defined in clause 5.6. If a Discovered AIT has been obtained for the current service, the terminal shall decide whether or not to use it according to the following policy:
1) If the PMT of the broadcast service references a PID carrying a valid `application_signalling_descriptor`, and an AIT section for the HbbTV® `application_type` is receivable from that PID within 30 seconds, the AIT provided in the broadcast service shall be used.

2) If the PMT of the broadcast services does not reference a PID carrying a valid `application_signalling_descriptor`, the Discovered AIT shall be used immediately.

3) If the PMT of the broadcast service references a PID carrying a valid `application_signalling_descriptor`, but an AIT section for the HbbTV® `application_type` has not been observed after continuously monitoring the AIT PID for 30 seconds, the Discovered AIT shall be used.

4) Relying on implementation-dependent logic, a terminal may use a Discovered AIT sooner than indicated in steps 1) and 3) above, for instance when no AIT has been observed on that particular service in the recent past.

If a DNS negative response for the AIT server needed for application discovery via broadband is cached for the current service then the terminal shall treat this identically to a regular broadcast service that does not include an AIT. The terminal shall not attempt to discover a AIT server under these conditions.

The terminal shall apply the lifecycle rules defined in clauses 6.2.2.2 and 6.2.2.3 of ETSI TS 102 796 [1] for broadcast-related applications where all references to AIT shall be replaced by Discovered AIT.

If a terminal connected to a DVB network not carrying the HbbTV AIT supports application discovery over broadband both 1) using DVB service information and 2) using watermarks then the terminal shall attempt both forms of discovery in parallel. The first Discovered AIT obtained by the terminal shall be used as the basis for the HbbTV application lifecycle. The second (slower) discovery process shall either be stopped or any eventual result silently ignored.

Once an application is launched and running, the terminal shall continue to employ the same technique that was used to acquire the AIT from which the application was launched for lifecycle management of that application until execution of that application is stopped or becomes broadcast independent, regardless of whether an alternate technique for application discovery is (or becomes) available. Subsequently, the terminal may again employ more than one of the specified techniques for application discovery until an application is again launched.

6.2.2 Services received via HDMI

The only applicable application discovery mechanism for services received via HDMI is application discovery over broadband using watermarks (as defined in the present document).

6.2.3 Services received via other input sources

Application discovery over broadband using watermarks (as defined in the present document) may also be applicable to non-DVB input sources such as IPTV or OTT.

6.3 Watermark states and transitions

6.3.1 State machine

The following table defines the states and state transitions for watermark detection and how this maps to the HbbTV application discovery process. States are defined as follows;

1) No watermark detected (initial state)
2) Unverified Video watermark detected only
3) Verified Video watermark detected only
4) Audio watermark detected only
5) Audio and verified video watermarks detected
6) Audio and unverified video watermarks detected

NOTE: See clause 6.3.2 below for a definition of what it means for the video watermark to be verified or not.
Transitions are defined from each state based on a number of events that can happen and trigger a change. Actions are defined for transitions where appropriate based on the following conditions happening:

- The terminal detects the start of a Video Watermark Segment (see table 5)
- The terminal detects the start of an Audio Watermark Segment (see table 5)
- The terminal detects the end of an Audio Watermark Segment (i.e. complete loss of audio watermark, change in server code, discontinuity in interval code) (see table 6)
- The terminal detects the end of a Video Watermark Segment (i.e. complete loss of video watermark, change in server code, discontinuity in interval code) (see table 7)
- An update to the XML-AIT corresponding to the currently received watermark results in a state change (e.g. previously unverified video watermark becoming verified or vice-versa) (see table 9)

When either of the following happens, running broadcast-related applications controlled by the watermark shall be stopped:

- the user selects a different input or source for the terminal (e.g. changing from an HDMI input to Smart TV) or
- the input over which the watermark has been received is lost (e.g. the user turns off the set-top box connected to an HDMI input).

In the case of change in server code or discontinuity in interval code, the transition(s) resulting from the end of one Watermark Segment shall be processed before the transition(s) resulting from the start of the next watermark Segment.

NOTE 1: Truly simultaneous detection or loss of video and audio watermarks is not included in this state machine. One is detected before the other and the events then processed sequentially.

In the case of change in query flag, there is no transition between states however a terminal action may be required depending on the current state (see Table 8).

A watermark state diagram including the transitions described in tables 1-6 is shown in figure 3.
Figure 3: Watermark state diagram
Table 4: State transitions when the terminal detects the start of a Video Watermark Segment

<table>
<thead>
<tr>
<th>Initial State</th>
<th>Trigger</th>
<th>New state</th>
<th>Typical Causes (informative)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 No watermark detected</td>
<td>Video watermark detected</td>
<td>Unverified video watermark detected only</td>
<td>1) Content change and video watermark is detected before audio watermark 2) Content change while audio is muted on HDMI device 3) Video watermark has been inserted by an attacker 4) Content change and audio watermark has been removed by an attacker</td>
<td>No action. Unverified video watermarks shall not be used for application discovery.</td>
</tr>
<tr>
<td>101 Audio watermark detected only</td>
<td>Video watermark detected that is verified using the audio watermark (see 6.3.2)</td>
<td>Audio and Verified Video watermarks detected</td>
<td>1) User dismisses UI on HDMI device which was scaling the video or obscuring the top line of the video. 2) Content change and audio watermark was detected before video watermark 3) Video component selection is changed on the HDMI device 4) Attacker has stopped removing video watermark</td>
<td>No action. Continue managing the HbbTV application lifecycle using audio watermark.</td>
</tr>
<tr>
<td>102 Audio watermark detected only</td>
<td>Video watermark detected that is not verified using the audio watermark</td>
<td>Audio and Unverified Video watermarks detected</td>
<td>1) Content change and new video watermark has been detected prior to detecting change in audio watermark 2) Error by the broadcaster 3) Video watermark has been inserted by an attacker</td>
<td>No action. Continue managing the HbbTV application lifecycle using audio watermark. Unverified video watermarks shall not be used for application lifecycle.</td>
</tr>
</tbody>
</table>

Verified video watermark detected only | Not applicable |

Audio and verified video watermarks detected | Not applicable |

Audio and unverified video watermarks detected | Not applicable |

Unverified video watermark detected | Not applicable |
Table 5: State transitions when the terminal detects the start of an Audio Watermark Segment

<table>
<thead>
<tr>
<th>Watermark State</th>
<th>Trigger</th>
<th>New state</th>
<th>Typical Causes (informative)</th>
<th>Action</th>
</tr>
</thead>
</table>
| 200 No watermark detected | Audio watermark detected | Audio watermark detected only | 1) Content change and audio watermark is detected before video watermark
2) Content change to content where video watermark is not used
3) Content change while HDMI device is scaling the video or obscuring the top line of the video | Start HbbTV application discovery using data from audio watermark (see 6.4.2). |
| 201 Unverified video watermark detected only | Audio watermark is detected that verifies the video watermark (see 6.3.2) | Audio and verified Video watermarks detected | 1) Content change has occurred and video watermark was detected before audio watermark
2) Content change has occurred while audio was muted on HDMI device and unmute has now occurred | Start HbbTV application discovery using data from audio watermark (see 6.4.2). |
| 202 Unverified video watermark detected only | Audio watermark detected that does not verify the video watermark (see 6.3.2) | Audio and unverified Video watermarks detected | 1) Multiple channel changes occurred and audio watermark is now detected on current channel after a video watermark was detected on a previous channel but before audio watermark was detected on the previous channel
2) Error by the broadcaster
3) Video watermark has been inserted by an attacker | Start HbbTV application discovery using data from audio watermark (see 6.4.2).
Unverified video watermarks shall not be used for the application discovery process. |
| 203 Verified video watermark detected only | Audio watermark detected, audio watermark still verifies the video watermark (see 6.3.2) | Audio and verified Video watermarks detected | 1) Audio is unmuted on HDMI device
2) Audio component selection is changed on HDMI device | No action. Continue managing the HbbTV application lifecycle (see 6.4.2). |
| 204 Verified video watermark detected only | Audio watermark detected that does not verify the video watermark (see 6.3.2) | Audio and unverified video watermarks detected | Content change has occurred while audio was muted on HDMI device | Start application discovery using data from audio watermark (see 6.4.2).
Unverified video watermarks shall not be used for the application discovery. |
| Audio watermark detected only | Not applicable | | | |
| Audio and verified video watermarks detected | Not applicable | | | |
| Audio and unverified video watermarks detected | Not applicable | | | |
Table 6: State transitions when the terminal detects the end of an Audio Watermark Segment

<table>
<thead>
<tr>
<th>Watermark State</th>
<th>Trigger</th>
<th>New state</th>
<th>Typical Causes (informative)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No watermark detected</td>
<td>Not applicable</td>
<td></td>
<td>1) Content change has occurred and loss of video watermark was detected before loss of audio watermark</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Content change has occurred for content using audio watermark only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) Content change has occurred while HDMI device is scaling the video or obscuring the top line of the video</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4) Audio muted on the HDMI device while HDMI device is scaling the video or obscuring the top line of the video</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5) Audio muted on the HDMI device for channel using audio watermark only</td>
<td></td>
</tr>
<tr>
<td>300 Audio watermark detected only</td>
<td>Audio watermark lost</td>
<td>No watermark detected</td>
<td>1) Content change has occurred and loss of video watermark was detected before loss of audio watermark</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Content change has occurred for content using audio watermark only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) Content change has occurred while HDMI device is scaling the video or obscuring the top line of the video</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4) Audio muted on the HDMI device while HDMI device is scaling the video or obscuring the top line of the video</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5) Audio muted on the HDMI device for channel using audio watermark only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Start process for loss of watermark (see 6.4.3)</td>
<td></td>
</tr>
<tr>
<td>Video watermark detected only</td>
<td>Not applicable</td>
<td></td>
<td>1) Content change has occurred and loss of audio watermark is detected before loss of video watermark</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Audio component selection is changed on HDMI device and audio watermark has not yet been detected on the new component</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) Audio is muted on the HDMI device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No action. Continue managing the HbbTV application lifecycle using video watermark. The video watermark is obeyed because it was verified by the last audio watermark detected.</td>
<td></td>
</tr>
<tr>
<td>301 Audio and verified video watermarks detected</td>
<td>Audio watermark lost</td>
<td>Verified video watermark detected only</td>
<td>1) Content change has occurred and loss of audio watermark is detected before loss of video watermark</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Audio component selection is changed on HDMI device and audio watermark has not yet been detected on the new component</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) Audio is muted on the HDMI device</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No action. Continue managing the HbbTV application lifecycle using video watermark. The video watermark is obeyed because it was verified by the last audio watermark detected.</td>
<td></td>
</tr>
<tr>
<td>302 Audio and unverified video watermarks detected</td>
<td>Audio watermark lost</td>
<td>Unverified video watermark detected only</td>
<td>1) Channel change has occurred and loss of audio watermark from prior channel is detected after video watermark from new channel is detected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Audio mute on the HDMI device during attack</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) Audio mute on the HDMI device during error by broadcaster</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Start process for loss of watermark (see 6.4.3). The video watermark shall be ignored because it was not verified by the last audio watermark detected.</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: State transitions when the terminal detects the end of a Video Watermark Segment

<table>
<thead>
<tr>
<th>Watermark State</th>
<th>Trigger</th>
<th>New state</th>
<th>Example (informative)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No watermark detected</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td>No action. Application discovery is not supported by unverified video watermark.</td>
</tr>
<tr>
<td>Audio watermark detected only</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **400** Unverified video watermark detected only | Video watermark lost | No watermark detected | 1) Multiple channel changes occurred and video watermark on prior channel was detected before audio watermark on prior channel was detected
2) Error by broadcaster ends
3) Attack on the system ends | No action. Application discovery is not supported by unverified video watermark. |
| **401** Audio and verified Video watermarks detected | Video watermark lost | Audio watermark detected only | 1) Content change has occurred and loss of video watermark is detected before loss of audio watermark
2) HDMI device begins scaling the video or obscuring the top line of the video
3) Video component selection is changed on HDMI device | No action. Continue managing the HbbTV application lifecycle using audio watermark. |
| **402** Audio and unverified video watermarks detected | Video watermark lost | Audio watermark detected only | 1) Multiple channel changes occurred and video watermark is detected and lost a prior channel before loss of audio watermark on an earlier prior channel
2) Error by the broadcaster ends
3) Attack on the system ends | No action. Continue supporting application discovery using audio watermark. |
| **403** Verified video watermark detected only | Video watermark lost | No watermark detected | 1) Content change has occurred and loss of video watermark is detected after loss of audio watermark
2) Content change while audio is muted on HDMI device
3) Video component selection is changed while audio is muted on HDMI device
4) HDMI device begins scaling the video or obscuring the top line of the video while audio is muted on HDMI device | Start process for loss of watermark (see 6.4.3) |
Table 8: Events without state transitions.

<table>
<thead>
<tr>
<th>Watermark State</th>
<th>Trigger</th>
<th>Typical Causes (informative)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 Unverified video watermark detected only</td>
<td>State change of Query Flag is detected in video watermark</td>
<td>1) Content change and AIT update is requested by broadcaster before audio watermark is detected 2) Video watermark has been inserted by an attacker 3) Audio watermark has been removed by an attacker</td>
<td>No action. Unverified video watermarks shall not be used for application discovery.</td>
</tr>
<tr>
<td>501 Audio watermark detected only</td>
<td>State change of Query Flag is detected in audio watermark</td>
<td>1) AIT update is requested by broadcaster</td>
<td>Acquire and process AIT using data from the audio watermark (see 6.4.2.2).</td>
</tr>
<tr>
<td>502 Audio and verified video watermark detected</td>
<td>State change of Query Flag is detected in video watermark</td>
<td>1) AIT update is requested by broadcaster</td>
<td>Acquire and process AIT using data from the audio watermark (see 6.4.2.2).</td>
</tr>
<tr>
<td>503 Audio and verified video watermark detected</td>
<td>State change of Query Flag is detected in audio watermark</td>
<td>1) AIT update is requested by broadcaster</td>
<td>Acquire and process AIT using data from the audio watermark (see 6.4.2.2).</td>
</tr>
<tr>
<td>504 Audio and unverified video watermark detected</td>
<td>State change of Query Flag is detected in audio watermark</td>
<td>1) AIT update is requested by broadcaster</td>
<td>Acquire and process AIT using data from the audio watermark (see 6.4.2.2).</td>
</tr>
<tr>
<td>505 Audio and unverified video watermark detected</td>
<td>State change of Query Flag is detected in video watermark</td>
<td>1) Channel change has occurred and AIT update is requested by broadcaster on new channel before loss of audio watermark is detected on prior channel 2) Channel change has occurred and broadcaster AIT update request is detected on prior channel before loss of watermark is detected 3) Broadcaster error 4) Video watermark is inserted by an attacker</td>
<td>No action. Unverified video watermarks shall not be used for application discovery.</td>
</tr>
<tr>
<td>506 Verified video watermark detected only</td>
<td>State change of Query Flag is detected in video watermark</td>
<td>1) AIT update is requested by broadcaster</td>
<td>Acquire and process AIT using data from the video watermark (see 6.4.2.2)</td>
</tr>
</tbody>
</table>

Table 9: State transitions based on AIT changes.

<table>
<thead>
<tr>
<th>Watermark State</th>
<th>Trigger</th>
<th>New state</th>
<th>Example (informative)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 Audio and unverified video watermarks detected</td>
<td>Discovered AIT is obtained that verifies the video watermark</td>
<td>Audio and verified video watermarks detected</td>
<td>Discovered AIT is obtained after both audio and video watermarks are detected</td>
<td>No action. Continue managing the HbbTV application lifecycle using audio watermark.</td>
</tr>
<tr>
<td>601 Audio and verified video watermarks detected</td>
<td>AIT update is obtained that no longer verifies the video watermark</td>
<td>Audio and unverified video watermarks detected</td>
<td>Broadcaster publishes an updated AIT that no longer contains the component element that previously verified the detected video watermark</td>
<td>No action. Continue managing the HbbTV application lifecycle using audio watermark.</td>
</tr>
</tbody>
</table>
6.3.2 Verification of video watermarks

A video watermark shall be considered verified by an audio watermark when either the server code in the two watermarks is the same or the server code in the two watermarks is not the same but the video watermark identifies components in the same service as defined by the channel element (as defined in clause 7.1.2) of the AIT retrieved from a URL formed using watermark payload data detected in the audio watermark.

6.3.3 Monitoring for watermarks

Terminals that support application discovery based on ATSC3 watermarks as defined in the present document shall monitor for audio watermarks [12] and optionally video watermarks [13] when displaying content received over HDMI and optionally SCART, DVB transmission, and other external inputs for which application signalling may be unsupported or unavailable. For audio watermarks, terminals shall support detection of Audio Watermark Segments conveying the VP1 payload and for video watermarks, terminals shall support detection of Video Watermark Segments conveying VP1 Messages and HbbTV Dynamic Event Messages.

Terminals should continue to monitor for watermarks on the external input when the HbbTV application, launched as a result of detecting a previous watermark, is playing content from broadband and not displaying content received over HDMI.

Clause 10.2.2 of the present document defines how applications can query:

1) Which technologies the terminal supports for the control of application lifecycle;
2) if the terminal supports playing broadband-delivered video overlayed on video received over HDMI;
3) if watermark monitoring stops when broadband-delivered video is presented.

NOTE: Terminals may not have the ability to extract watermarks from HDMI content at the same time as playing content over broadband.

6.4 Application lifecycle when controlled by watermarks

6.4.1 Introduction

The application discovery process may be undertaken by an HbbTV Terminal to discover and manage the lifecycle of HbbTV applications. In accordance with the state machine specified in clause 6.3.1, application discovery is started, followed, and ends based on the detection and loss of watermarks. Clause 6.4.2 specifies terminal behaviors associated with starting and following the application discovery process. Clause 6.4.3 specifies terminal behaviors associated with ending it.

During application discovery, data obtained from watermarks is used to retrieve AITs for use in supporting application discovery. The data conveyed in audio and video watermarks may be different, so when both are present the terminal shall perform the application discovery process using data from the type of watermark as indicated in clause 6.3.1.

AITs delivered via application discovery using watermarks shall include extensions as specified in clause 7.1.2. These elements provide the Terminal with information about the current service that would typically be provided as broadcast signalling such as service identification information, timing information, and stream events but which is not conveyed over an HDMI interface.

6.4.2 Managing the HbbTV application lifecycle

6.4.2.1 Introduction

Clause 6.3.1 specifies watermark-related events that cause the application discovery process to be started. To do this, the terminal shall acquire and process an AIT as specified in clause 6.4.2.2.

After the application discovery process is started, and until loss of watermark occurs per clause 6.3.1, the terminal shall continue to follow the HbbTV application discovery process as specified in the present clause so long as a valid AIT (see clause 6.4.2.3) is available to the terminal.
AITS may indicate the period of the watermark media timeline for which they are valid (see clause 6.4.2.3). AITS may indicate they are not valid after a certain time on the media timeline in order to trigger reloading the AIT as that time is reached during playback, to enable a broadcaster to modify AITS in accordance with their program schedule. AITS may also indicate they are valid indefinitely.

When the current playback position on the watermark media timeline (see clause 6.4.2.4) approaches the end of the validity period of a valid AIT (see clause 6.4.2.3), the terminal shall perform a “scheduled AIT update” where it acquires and processes another AIT as specified in clause 6.4.2.2. The time period during which the terminal shall retrieve the AIT is measured backwards from the end of the validity period. The duration of this time period shall either be defined by the scheduledQuerySpread (defined in Table 12), if present, otherwise it shall be 150 seconds. The Terminal should randomly select a time within this time period to make the AIT retrieval request so as to spread transaction load on the AIT server from any individual terminal across the requested time period interval. The terminal should not leave this until the very end of the validity period but allow for network and processing latencies so as to ensure that an updated AIT is received by the Terminal prior to the end of the AIT validity period.

Table 8 of clause 6.3.1 specifies watermark-related events that cause an updated AIT to be retrieved based on changes to the Query Flag in the watermark data. The terminal shall maintain a single Query Flag value shared across audio and verified video watermarks. When a VP1 payload is detected in either the audio or verified video watermark with a different Query Flag value from the shared value and when a corresponding action is indicated, the terminal shall acquire and process another AIT as specified in clause 6.4.2.2 unless another Query Flag change has been detected within the past 1.5 seconds on the watermark media timeline, in which case the later Query Flag change shall be ignored.

NOTE: Care is needed to prevent missing changes in the Query Flag if values change in successive 1.5s intervals.

When querySpread defined in Table 12 is present, this value shall specify the maximum duration that the terminal is recommended to delay submission of the AIT request after detection of the change to the Query Flag. The Terminal should randomly select a time, up to the querySpread value, to delay the issuance of the AIT retrieval request so as to spread transaction load on the AIT server across the requested time period. If no querySpread is present then the terminal shall acquire and process the new AIT as quickly as possible.

An example scenario with “State Change in the Query Flag” events is illustrated in figure 4. In this example, VP1 Cells start at times 0s, 1.5, and 3s in the audio watermark and VP1 Message Groups start at times 0.5s, 2s, and 3.5s in the video watermark. The broadcaster decides to initiate a state change in the Query Flag at time 1.8 seconds. The new queryFlag value begins being transmitted in the video watermark at time 2.0s, when the next VP1 Message Group begins. This message can be detected from a single transmitted video frame, so the receiver is able to recognize the queryFlag change and issue a request to retrieve an updated AIT with 1 video frame of latency at time 2.0333s (assuming a video frame rate of 30 fps). At time 3s, the terminal has received the complete VP1 Cell which began at time 1.5s, prior to the broadcaster initiating the Query Flag change. This payload carries the prior Query Flag value, which is different from the changed value being carried in the video watermark. Because a Query Flag change was detected within the prior 1.5 seconds, this change is ignored. Subsequent detections of the audio and video watermarks do not indicate any further Query Flag changes.

![Figure 4: “State Change in the Query Flag” Example Scenario.](image_url)

If an attempt to retrieve an AIT in accordance with clause 6.4.2.2 fails to return an AIT (e.g. due to DNS failure, network timeout, or TLS certificate error), the terminal shall retry the same retrieval request repeatedly using an exponential backoff method where the initial delay is 5 seconds and succeeding delays are doubled until either: (a) an AIT is obtained via retry, (b) a scheduled AIT update is initiated in accordance with the present clause; or (c) the process for loss of watermark or Query Flag change is started as indicated by operation of the state machine described in clause 6.3.1.
If an attempt to retrieve an AIT in accordance with clause 6.4.2.2 returns an invalid AIT, the terminal may again perform the process described in clause 6.4.2.2 but shall not do so with a frequency of greater than once per 5 seconds until either: (a) a valid AIT is retrieved, (b) a scheduled AIT update is initiated in accordance with the present clause; or (c) the process for loss of watermark or Query Flag change is started as indicated by operation of the state machine described in clause 6.3.1.

6.4.2.2 Acquire and Process an AIT

The terminal shall acquire and process AITs by performing the following steps, in sequence:

1) If any of the following conditions a.-d. apply:
 a. AIT acquisition and processing was initiated as a result of a Query Flag change as specified in Table 8 of clause 6.3.1;
 b. the terminal is performing a scheduled AIT update per clause 6.4.2.1;
 c. no AIT previously obtained using watermark data is present on the Terminal;
 d. an AIT previously obtained using watermark data is cached in the Terminal but it is not valid for the presently detected watermark data in accordance with clause 6.4.2.3;

 then the terminal shall perform the steps i) to vi) in the order listed:
 i. construct an HbbTV DNS FQDN according to clause 5.4.2.
 ii. if the results of a previous successful DNS resolution of the Authoritative FQDN from the HbbTV DNS FQDN is cached by the terminal, the terminal shall use the cached result as the Authoritative FQDN; otherwise, if no negative response is cached by the terminal, the terminal shall perform a DNS request to obtain the Authoritative FQDN according to clause 5.5 and cache the server_field value in the detected watermark and the DNS resolution result according to clause 5.2.
 iii. use the Authoritative FQDN to retrieve the AIT for the service according to clause 5.6.2.
 iv. initialise the watermark media timeline as defined in clause 6.4.2.4
 v. confirm that the retrieved AIT is currently valid as defined in clause 6.4.2.3.
 vi. confirm that the value of the queryFlag element, if present, of the current component object of the AIT as specified in clause 6.4.2.4.2 associated with the media type (audio or video) from which the watermark used to form the AIT retrieval request was detected matches the value in the corresponding field of the watermark used to form the AIT retrieval request. If the queryFlag element is present in the AIT but does not match the value detected from the watermark, the AIT shall be deemed invalid and the terminal shall not perform any AIT retrieval action as a result of any Query Flag state change event for 5 minutes or until loss of watermark occurs, if sooner than 5 minutes.

 else, the AIT that was previously obtained using watermark data shall be employed.

2) If the terminal now has a valid AIT for the service to employ, then:
 a. if the service identified by the AIT is the same as the service identified by the most recently active AIT, then the terminal shall apply clause 6.2.2.3 of TS 102 796 [1] using the AIT, however the step “app continues to run” in that clause shall be: “app continues to run and is unhidden, if it was hidden according to 6.4.3 of TS 103 464”;
 b. otherwise, it shall apply clause 6.2.2.2 of TS 102 796 [1] using that AIT, however the step “app continues to run” in that clause shall be: “app continues to run and is unhidden, if it was hidden according to 6.4.3 of TS 103 464.”
 c. If a running application is unhidden and has a video/broadcast object that is in the Connecting state then that object shall transition to the Presenting state.

3) If the terminal has performed the preceding steps and does not have a valid AIT corresponding to a service identified by watermark data, it shall be treated the same as a selection of a service with no AIT as defined TS 102 796 [1].
6.4.2.3 AIT Validity

When application discovery is performed using watermarks, an AIT shall be considered valid for the presently detected watermark when the following conditions are all met:

1) The server code in the presently detected watermark is present in either a videoComponent or an audioComponent (as appropriate for the type of media carrying the watermark) as defined in Table 12, in order to verify that the component from which the watermark is detected is a component of the service described by the AIT.

2) The current playback position in the service as determined by the presently detected watermark (see clause 6.4.2.4) is within the validity period of the AIT defined by the attribute values of validFrom and validUntil of the AIT in Table 11.

6.4.2.4 Watermark media timeline

6.4.2.4.1 Introduction

The watermark media timeline is a stable reference frame for associating media time to watermarked content (i.e. a timebase timeline per TS103286-2 [i.2], similar to TEMI (see ISO/IEC 13818-1:2018 [i.3]) that enables terminals and HbbTV applications to precisely synchronize elements of the media presentation, regardless of distribution path latency when application discovery using watermarking is employed.

The watermark media timeline is established by the temporal location of the watermarks in audio and video components of a service, the interval_field values carried in the watermark payload, and the @audioComponent and @videoComponent elements conveyed in XML AIT extensions. An example is shown in figure 5.
Figure 5: Watermark media timeline example

The watermark media timeline is used in the application discovery process by the terminal to associate a media time with the current playback position in the content for purposes of 1) determining AIT validity as specified in clause 6.4.2.3, 2) performing scheduled AIT updates as specified in clause 6.4.2.1, and 3) supporting use of the MediaSynchronizer and stream event APIs when application discovery using watermarking is employed (see clauses 9.2 and 9.3).

6.4.2.4.2 Initialising the watermark media timeline

The terminal shall select a current audio component from among those audioComponent elements present in the AIT with watermark@serverField value equal to the server_field value present in the most recently detected audio watermark (the “candidate audio components”) as follows:

1) If there are any candidate audio components with watermark@intervalFieldAnchor value less than or equal to the detected interval_field, then the current audio component shall be the candidate audio component whose watermark@intervalFieldAnchor value is nearest to, but not greater than, the interval_field value in the most recently detected audio watermark. (If more than one candidate audio component meets this selection criterion, then the first such component listed in the AIT shall be selected.);

2) otherwise, the current audio component shall be the candidate audio component whose watermark@intervalFieldAnchor value is nearest to the interval_field value in the most recently detected audio component.
watermark. (If more than one candidate audio component meets this selection criterion, then the first such component listed in the AIT shall be selected);

3) If no such component is present in the AIT, then no current audio component shall be selected.

If the watermark state machine (defined in clause 6.3.1) is in either the Audio and verified video watermark detected state or the Verified video watermark detected only state, then the terminal shall select a current video component from among those videoComponent elements in the AIT with watermark@serverField value equal to the server_field value present in the most recently detected video watermark (the “candidate video components”) as follows:

1) If there are any candidate video components with watermark@intervalFieldAnchor less than or equal to the detected interval_field, then the current video component shall be the candidate video component whose watermark@intervalFieldAnchor value is nearest to, but not greater than, the interval_field value in the most recently detected video watermark. (If more than one candidate video component meets this selection criterion, then the first such component listed in the AIT shall be selected);

2) otherwise, the current video component shall be the candidate video component whose watermark@intervalFieldAnchor value is nearest to the interval_field value in the most recently detected video watermark. (If more than one candidate video component meets this selection criterion, then the first such component listed in the AIT shall be selected);

3) If no such component is present in the AIT, then no current video component shall be selected.

If the watermark state machine (defined in clause 6.2.1) is in one of the following states then the watermark media timeline shall be initialised from the video watermark detected:

- Audio watermark detected only
- Audio and unverified video watermarks detected
- Audio and verified video watermarks detected

If the watermark state machine (defined in clause 6.2.1) is in one of the following states then the watermark media timeline shall be initialised from the video watermark detected:

- Verified video watermark detected only

The following process shall be followed when the terminal is required to initialise the media timeline from an audio watermark and an AIT.

1) If no current audio component is selected, the watermark media timeline is considered to have not been initialized.

2) If a current audio component is selected, the terminal shall initialize the watermark media timeline such that the media time of the first audio sample of the first symbol of the most recently detected audio watermark cell has the media time (in milliseconds):

\[
((i_w - i_a) \times 1500) + T_a,
\]

where

- \(i_w\) = the value of the interval_field in the audio watermark
- \(i_a\) = the value of watermark@intervalFieldAnchor in the current audio component
- \(T_a\) = the value of watermark@mediaTimeAnchor in the current audio component

The following process shall be followed when the terminal is required to initialise the media timeline from a video watermark and an AIT.

1) If no current video component is selected, the watermark media timeline is considered to have not been initialized.

2) If a current video component is selected, the terminal shall initialize the watermark media timeline such that the media time of the video frame carrying the first video watermark payload of the most recently detected video watermark message group has the media time (in milliseconds):
where

\[i_w = \text{the value of the interval_field in the video watermark} \]

\[i_a = \text{the value of watermark@intervalFieldAnchor in the current video component} \]

\[T_a = \text{the value of watermark@mediaTimeAnchor in the current video component} \]

6.4.2.4.3 Determining the Media Time of watermarked content

After the watermark media timeline is initialized, it provides a mapping for associating a media time with points in time in the watermarked content.

During an audio watermark segment (either with or without the detection of video watermarks), the media time associated with each audio sample in the watermark segment shall be determined based on its offset in the media stream relative to the audio sample at which the watermark media timeline was initialized. That is, the media time of each audio sample shall be offset from that of the adjacent audio samples by the nominal audio sampling interval (i.e. one divided by the nominal audio sampling rate).

While the terminal is in the watermark state “Verified Video Watermark Detected Only” (as specified in clause 6.3.1), the media time associated with each video frame in the video watermark segment shall be determined based on its offset in the media stream relative to the video frame at which the watermark media timeline was initialized. That is, the media time of each video frame shall be offset from that of the adjacent video frames by a value equal to the nominal video frame interval (i.e. one divided by the nominal video frame rate).

NOTE: Media time calculations should be made with sufficient precision to avoid drift due to accumulated rounding error.

6.4.2.4.4 Maintaining synchronization to the Watermark Media Timeline

During an audio watermark segment (either with or without the detection of video watermarks), after the watermark media timeline for an audio watermark segment has been initialized in accordance with clause 6.4.2.4.2, upon detection of each subsequent watermark payload in an audio watermark segment, terminals shall calculate:

1) the watermark media time according to clause 6.4.2.4.3 and

2) the watermark media time that would apply if the watermark media timeline was initialised according to clause 6.4.2.4.2 using the newly received watermark payload.

If the two media times differ by greater than one-half the video frame interval (i.e. one-half divided by the video frame rate), the terminal shall re-initialize the watermark media timeline as specified in 6.4.2.4.2. Otherwise, it shall leave the watermark media timeline unmodified.

While the terminal is in the watermark state “Verified Video Watermark Detected Only” (as specified in clause 6.3.1), after the watermark media timeline has been initialized in accordance with clause 6.4.2.4.2, upon detection of each subsequent video watermark message group in a video watermark segment, terminals shall re-initialize the watermark media timeline as specified in clause 6.4.2.4.2.

6.4.3 Loss of watermark

Clause 6.3.1 specifies the conditions under which a loss of watermark detection condition is indicated. When this happens, the following shall apply:

- If a broadcast-related HbbTV application is running that the user has not activated (see clause 10.2.2.1 of TS 102 796 [1]), that application shall be stopped as defined in clause 6.2.2.2 of TS 102 796 [1] for a broadcast service where no HbbTV applications are signalled.

- If a broadcast-related HbbTV application is running that the user has activated (see clause 10.2.2.1 of TS 102 796 [1]) then terminals should hide the application and allow the user to see the whole area of the content delivered by HDMI within 2 seconds. If the application has a video/broadcast object that is in the Presenting state then that object shall transition to the Connecting state.
Terminals should stop applications that are hidden pursuant to this clause (and have not been subsequently killed or unhidden according to clause 6.4.2) after an implementation-dependent period, not less than 2 minutes.

NOTE: Clause 6.4.2.2 defines the conditions when an application that is running but hidden according to this clause is required to stop being hidden.

6.4.4 Transitioning between HbbTV Application types

Terminals shall support one broadcast-related HbbTV application starting another broadcast-related HbbTV application based on “dvb:” URLs and use the AIT retrieved using watermark data for the current channel to resolve the URL.

If a broadcast-related HbbTV application starts a broadcast-independent application then the lifecycle of that second application shall not be controlled by the watermark.

If a broadcast-related HbbTV application calls the setChannel() method on the video/broadcast object with a value of null for its channel argument then the lifecycle of that application shall stop being controlled by the watermark and transition to become broadcast independent.

If an HbbTV application that was originally launched as broadcast-related following watermark detection transitions to broadcast-independent and then some time later attempts to transition back to broadcast related then the terminal shall present the video and audio from the HDMI input last used with HbbTV and attempt to detect watermarks. If a watermark is detected then the terminal shall decide whether the application is killed by applying the conditions in clause 6.2.2.6.1 [1] including obtaining the AIT. Broadcast-independent applications not originally launched as broadcast-related following watermark detection shall be stopped if they attempt to transition to broadcast-related.

If a broadcast-independent HbbTV application attempts to transition to broadcast-related as defined in clause 6.2.2.6.1 of TS 102 796 [1], it shall be stopped.

If the content with the video watermark is encoded at very low bitrates (e.g., MPEG-2 at a fixed bitrate of 1 Mbit/s), it may not be possible to reliably extract the video watermark. It is not possible to provide an exact threshold, though reliable operation using MPEG-2 at 2.5 Mbit/s has been demonstrated. Reliability can depend on many factors, such as the codec type, the codec model, how that codec allocates its bits across the frame, the bitrate, whether a statistical multiplex is used, the nature of the content, etc. Broadcasters can adjust their use of the technology, including the watermark embedding level, the redundancy of dynamic event message transmission, and application behaviour accordingly. Applications can monitor video watermark reliability using the watermark state tracking capability specified in clause 8.1.

7 Formats and protocols

7.1 Signalling of applications

7.1.1 XML AIT for Broadcast-related broadband application discovery

The AIT for broadcast-related applications discovered over broadband shall be encoded in XML similarly to the way defined in ETSI TS 102 796 [1] for broadcast-independent applications. The XML file shall contain an ApplicationDiscovery record containing one or more <application> elements.

The semantics of the fields and elements in the XML AIT file shall be as defined in table 10. All entries which are identical to the contents as defined in table 7 “Contents of XML AIT for Broadcast-independent applications” of ETSI TS 102 796 [1] are marked as ”Same as for broadcast-independent applications.”.

<table>
<thead>
<tr>
<th>Field or element</th>
<th>Requirement on XML AIT file</th>
<th>Requirement on terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>appName</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationIdentifier</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationDescriptor/type/OtherApp</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationDescriptor/controlCode</td>
<td>Mandatory.</td>
<td>Mandatory.</td>
</tr>
<tr>
<td>applicationDescriptor/visibility</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationDescriptor/serviceBound</td>
<td>Mandatory.</td>
<td>Mandatory.</td>
</tr>
<tr>
<td>applicationDescriptor/priority</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationDescriptor/version</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationDescriptor/mhpVersion</td>
<td>Shall be the same values as defined for the MPEG-2 encoding of the AIT in the row of table 5 "Supported application signalling features" from ETSI TS 102 796 [1] that corresponds to clause 5.2.5 of ETSI TS 102 809 [6].</td>
<td>As defined in table 7 "Contents of XML AIT for Broadcast-independent applications" of ETSI TS 102 796 [1].</td>
</tr>
<tr>
<td>applicationDescriptor/icon</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationDescriptor/storageCapabilities</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationTransport/</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationLocation/</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationBoundary/</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationSpecificDescriptor</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
<tr>
<td>applicationUsageDescriptor</td>
<td>Same as for broadcast-independent applications.</td>
<td>Same as for broadcast-independent applications.</td>
</tr>
</tbody>
</table>

Clause 7.2.3.2 of ETSI TS 102 796 (V1.4.1) [2] defines how to signal parental rating information in the XML AIT - something not included in some earlier versions. When the solution defined in the present document is used in combination with ETSI TS 102 796 (V1.4.1) [2], or a more recent version of ETSI TS 102 796 [1], if the XML AIT for a Discovered broadcast-related application includes a parental rating then that rating shall be acted upon as defined in clause 6.2.2.10 of ETSI TS 102 796 (V1.4.1) [2]. Parental rating for Discovered broadcast-related applications is not supported when the solution defined in the present document is used with earlier versions of ETSI TS 102 796 [1].

Optionally XML DSIG [8] can be used to authenticate XML AITs and hence to enable terminals to reject XML AITs if (for example) DNS responses are being tampered with. Terminals not supporting this option shall silently ignore any Signature element that appears within the ServiceDiscovery element and process the XML AIT as if that information were not present.

NOTE: The present document does not define a trust hierarchy for authenticating XML AITs.

7.1.2 XML AIT Extensions

When used with watermarking, the XML AIT format described in clause 5.4 of ETSI TS 102 809 [6] and extended in clause 7.2.3.2 of TS 102 796 [1] is further extended as defined in the following schema and in tables 11 and 12. The normative definition of this schema is found in the electronic attachments - see Annex B of the present document.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns:oipf="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
  xmlns:hbbtv="urn:hbbtv:application_descriptor:2014"
  targetNamespace="urn:hbbtv:watermark:2018"
  elementFormDefault="qualified" attributeFormDefault="unqualified">
  <xs:import namespace="urn:dvb:mhp:2009" schemaLocation="oipf/imports/mis_xmlait.xsd"/>
  <xs:import namespace="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
    schemaLocation="oipf/imports/sdns_v1.4r13.xsd"/>
  <xs:import namespace="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
    schemaLocation="oipf/iptv-ContentAccessDownloadDescriptor.xsd"/>
  <xs:import namespace="urn:hbbtv:application_descriptor:2014"
    schemaLocation="hbbtv_application_descriptor.xsd"/>
  <xs:complexType name="WatermarkExtensions">
    ...
  </xs:complexType>
</xs:schema>
```
<xs:extension base="alt:ApplicationOfferingType">
 <xs:sequence>
 <xs:element name="channel" type="hbbwm:ChannelType"/>
 <xs:element name="validFrom" type="xs:unsignedLong" minOccurs="0"/>
 <xs:element name="validUntil" type="xs:unsignedLong" minOccurs="0"/>
 </xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ChannelType">
 <xs:sequence>
 <xs:element name="channelType" type="hbbwm:ChannelTypeType"/>
 <xs:element name="idType" type="hbbwm:ChannelIDType"/>
 <xs:element name="nid" type="xs:unsignedShort"/>
 <xs:element name="onid" type="dvb:OrigNetId"/>
 <xs:element name="tsid" type="dvb:TSId"/>
 <xs:element name="sid" type="dvb:ServiceId"/>
 <xs:element name="name" type="dvb:Service"/>
 <xs:element name="majorChannel" type="xs:unsignedShort"/>
 <xs:element name="videoComponent" type="hbbwm:AVVideoComponentType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="audioComponent" type="hbbwm:AVAudioComponentType" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:simpleType name="ChannelTypeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="TYPE_TV"/>
 <xs:enumeration value="TYPE_RADIO"/>
 <xs:enumeration value="TYPE_OTHER"/>
 <xs:enumeration value="TYPE_HBBTV_DATA"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="ChannelIDType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ID_ANALOG"/>
 <xs:enumeration value="ID_DVB_C"/>
 <xs:enumeration value="ID_DVB_S"/>
 <xs:enumeration value="ID_DVB_T"/>
 <xs:enumeration value="ID_DVB_C2"/>
 <xs:enumeration value="ID_DVB_S2"/>
 <xs:enumeration value="ID_DVB_T2"/>
 <xs:enumeration value="ID_IPTV_SDS"/>
 <xs:enumeration value="ID_IPTV_URI"/>
 </xs:restriction>
</xs:simpleType>
<xs:complexType name="AVComponentType">
 <xs:complexContent>
 <xs:extension base="hbbwm:AVComponentType">
 <xs:sequence>
 <xs:element name="componentTag" type="xs:unsignedByte"/>
 <xs:element name="pid" type="dvb:Hexadecimal16bit"/>
 <xs:element name="type" type="hbbwm:ComponentTypeType"/>
 <xs:element name="encoding" type="xs:string"/>
 <xs:element name="encrypted" type="xs:boolean"/>
 <xs:element name="watermark" type="hbbwm:WatermarkComponentType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:simpleType name="ComponentTypeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="COMPONENT_TYPE_VIDEO"/>
 <xs:enumeration value="COMPONENT_TYPE_AUDIO"/>
 </xs:restriction>
</xs:simpleType>
<xs:complexType name="AVAudioComponentType">
 <xs:complexContent>
 <xs:extension base="hbbwm:AVComponentType">
 <xs:sequence>
 <xs:element name="language" type="dvb:ISO639-2"/>
 <xs:element name="audioDescription" type="xs:boolean"/>
 <xs:element name="audioChannels" type="xs:short"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="AVVideoComponentType">
 <xs:complexContent>
 <xs:extension base="hbbwm:AVComponentType">
 <xs:attribute name="aspectRatio" type="xs:decimal"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
An example of an XML AIT using this schema (informative). This example can also be found in the electronic attachments - see Annex B of the present document.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<ait:ServiceDiscovery
xmlns:ait="urn:dvb:mhp:2009"
xmlns:hbb="urn:hbbtv:application_descriptor:2014"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:hbbwm="urn:hbbtv:watermark:2018">
<ait:ApplicationDiscovery xsi:type="hbbwm:WatermarkExtensions" DomainName="example.com">
<ait:ApplicationList>
<ait:Application>
<ait:appName Language="eng">Whizzo Play Along Quiz</ait:appName>
<ait:applicationIdentifier>
<ait:orgId>123</ait:orgId>
<ait:appId>456</ait:appId>
</ait:applicationIdentifier>
<ait:applicationDescriptor xsi:type="hbb:HbbTVApplicationDescriptor">
<ait:type>
<ait:OtherApp>application/vnd.hbbtv.xhtml+xml</ait:OtherApp>
</ait:type>
<ait:controlCode>AUTOSTART</ait:controlCode>
<ait:visibility>VISIBLE_ALL</ait:visibility>
<ait:serviceBound>false</ait:serviceBound>
<ait:priority>1</ait:priority>
<ait:version>01</ait:version>
</ait:applicationDescriptor>
<ait:applicationTransport xsi:type="ait:HTTPTransportType">
<ait:URLBase>https://www.example.com/</ait:URLBase>
</ait:applicationTransport>
<ait:applicationLocation>whizzo-app.html?a=1</ait:applicationLocation>
</ait:Application>
</ait:ApplicationList>
</ait:ApplicationDiscovery>
</ait:ServiceDiscovery>
```
The extended element definitions shown in Table 11 shall apply to XML AITs retrieved using information obtained from watermarking.
Table 11: AIT extensions for watermarking

<table>
<thead>
<tr>
<th>Parent Element</th>
<th>Optional (Informative)</th>
<th>Max elements (Informative)</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>WatermarkExtensions</td>
<td>Yes</td>
<td>1</td>
<td>Earliest time (milliseconds) on the watermark media timeline at which the AIT is valid. When absent, there is no earliest time at which the AIT is valid (i.e. the AIT is valid at any time prior to the latest validity time).</td>
</tr>
<tr>
<td>validFrom</td>
<td>Yes</td>
<td>1</td>
<td>Latest time (milliseconds) on the watermark media timeline at which the AIT is valid. When absent, there is no latest time at which the AIT is valid (i.e. the AIT is valid at any time after the earliest validity time).</td>
</tr>
<tr>
<td>channel</td>
<td>No</td>
<td>1</td>
<td>Container for the properties of a broadcast TV channel and its components</td>
</tr>
<tr>
<td>Channel</td>
<td>channelType</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>idType</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>nid</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>onid</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tsid</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sid</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>majorChannel</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>videoComponent</td>
<td>Yes</td>
<td>*</td>
<td>Container for the video components in the broadcast TV service</td>
</tr>
<tr>
<td>audioComponent</td>
<td>No</td>
<td>*</td>
<td>Container for the audio components in the broadcast TV service</td>
</tr>
<tr>
<td>AVComponent</td>
<td>componentTag</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>pid</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>encoding</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>encrypted</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>watermark</td>
<td>No</td>
<td>1</td>
<td>Provides additional information about AVComponents that can be identified by a watermark. See Table 12.</td>
</tr>
<tr>
<td>AVAudioComponent</td>
<td>language</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>audioDescription</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>audioChannels</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AVVideoComponent</td>
<td>aspectRatio</td>
<td>No</td>
<td>1</td>
</tr>
</tbody>
</table>

The extended element definitions shown in Table 12 shall apply to XML AITs retrieved using information from watermarks.
Table 12: XML AIT Extensions for Application Discovery over Broadband with Watermarks

<table>
<thead>
<tr>
<th>Parent Element or Attribute Name</th>
<th>Optional</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATSC3WatermarkCompoentType</td>
<td></td>
<td></td>
</tr>
<tr>
<td>serverField</td>
<td>No</td>
<td>The VP1 Server Code (as defined in ATSC A/336 [9]) used in the watermark of the component matching this AVAudioComponent or AVVideoComponent.</td>
</tr>
<tr>
<td>intervalFieldAnchor</td>
<td>No</td>
<td>The value of the VP1 Interval Code corresponding to the mediatimeAnchor element. For an audio watermark component, this corresponds to the sampling instant of the first sample of the first symbol of the audio watermark Cell conveying that payload. For a video watermark component, this corresponds to the sampling instant of the first frame of the VP1 Message Group conveying that payload.</td>
</tr>
<tr>
<td>mediaTimeAnchor</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>querySpread</td>
<td>Yes</td>
<td>Time period in milliseconds on the wall-clock timeline during which terminal should request AIT retrieval when signaled by the Query Flag.</td>
</tr>
<tr>
<td>scheduledQuerySpread</td>
<td>Yes</td>
<td>Time period in milliseconds on the watermark media timeline during which terminal should query AIT server when the end of the validity period approaches.</td>
</tr>
<tr>
<td>queryFlag</td>
<td>Yes</td>
<td>The value of the VP1 (as defined in ATSC A/336 [9]) used in the watermark of the component matching this AVAudioComponent or AVVideoComponent.</td>
</tr>
</tbody>
</table>

7.2 Watermark formats

7.2.1 Introduction

The present document includes one audio watermark format and one video watermark format. The document is structured to enable addition of other formats in the future.

The present document makes extensive use of the data structures defined by ATSC in A/336 [9] – particularly the VP1 payload but also the dynamic event message. These data structures are believed to be independent of the underlying watermark format and hence should be possible to re-use with other formats.

7.2.2 ATSC 3 Watermarks

The present document includes the ATSC 3 watermarks defined in A/334 [12] and A/335 [13].

If the content with the ATSC video watermark is encoded at very low bitrates (e.g., MPEG-2 at a fixed bitrate of 1 Mbit/s), it may not be possible to reliably extract the video watermark. It is not possible to provide an exact threshold, though reliable operation using MPEG-2 at 2.5 Mbit/s has been demonstrated. Reliability can depend on many factors, such as the codec type, the codec model, how that codec allocates its bits across the frame, the bitrate, whether a statistical multiplex is used, the nature of the content, etc. Broadcasters can adjust their use of the technology, including the watermark embedding level, the redundancy of dynamic event message transmission, and application behaviour accordingly. Applications can monitor video watermark reliability using the watermark state tracking capability specified in clause 8.1.

8 Browser application environment

8.1 Extensions to the application/oipfApplicationManager embedded object and the Application class

The following additional property shall be supported on the Application class.

```javascript
readonly String lifecycleControl
```
<table>
<thead>
<tr>
<th>Description</th>
<th>Indicates which signalling mechanism is controlling the lifecycle of the application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>reading the property. Values shall be as follows:</td>
</tr>
<tr>
<td>Broadcast-independent application</td>
<td>** (i.e. empty string)</td>
</tr>
<tr>
<td>Broadcast AIT as defined in TS 102 796 [1]</td>
<td>"ait-mpeg2"</td>
</tr>
<tr>
<td>Discovered AIT as defined in clauses 5.3.1, 5.4.1 and 5.6.1 of the present document</td>
<td>"xmlait-dvbsi"</td>
</tr>
<tr>
<td>ATSC3 watermark as used in the present document</td>
<td>"xmlait-atsc3"</td>
</tr>
</tbody>
</table>

The following additional property shall be supported on the application/oipfApplicationManager embedded object.

```
readonly String watermarkState
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the watermark state as defined in clause 6.3.1 of the present document. This shall be encoded as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Audio Watermark Detected Only</td>
</tr>
<tr>
<td></td>
<td>Audio and Unverified Video Watermarks Detected</td>
</tr>
<tr>
<td></td>
<td>No Watermark Detected</td>
</tr>
<tr>
<td></td>
<td>Unverified Video Watermark Detected Only</td>
</tr>
<tr>
<td></td>
<td>Verified Video Watermark Detected Only</td>
</tr>
<tr>
<td></td>
<td>Audio and Verified Video Watermarks Detected</td>
</tr>
<tr>
<td></td>
<td>Watermark detector is not running (e.g. an application controlled by a broadcast AIT as defined in TS 102 796 [1] is running on a terminal supporting the present document but not supporting watermark detection from broadcast video)</td>
</tr>
</tbody>
</table>

Note that some of these values may only be returned transiently (e.g. when the loss of watermark process is being followed), may only be returned under very precise circumstances or may not be returned at all.

Applications shall be able to use the **addEventListener** method to register **EventListener**s for events of type "WatermarkStateChanged" on the **oipfApplicationManager** object (as defined in the OIPF DAE specification [4]). When the watermark state changes (as defined in clause 6.3.1 of the present document), a **WatermarkStateChangedEvent** shall be sent to all **EventListeners** registered for events of that type.

```
interface WatermarkStateChangedEvent : Event {
    readonly attribute String      oldState;
    readonly attribute String      newState;
}
```

Properties

- **oldState**
 - The watermark state before the state change. State names shall be encoded as defined for the **watermarkState** property.
- **newState**
 - The watermark state after the state change. State names shall be encoded as defined for the **watermarkState** property.

NOTE: This event is directly dispatched to the event target, and will not bubble nor capture. Applications should not rely on receiving the events listed above during the bubbling or the capturing phase. The third parameter of **addEventListener**, i.e. “useCapture”, will be ignored.

9 System integration

9.1 Use of video/broadcast API and related classes with watermarking

The following shall apply when application discovery using watermarking is employed, once the terminal has obtained a Discovered AIT corresponding to the currently received watermark and an HbbTV application is running that has or creates a video/broadcast object.

- A **Channel** object shall be created where the values of the properties are taken from of the elements of the same name in the **channel** element in the Discovered AIT except for **ccid**, **dsd**, and **terminalChannel**.
- The value of ccid shall be as specified in the OIPF DAE specification [4].
- The values of dsd and terminalChannel are implementation dependent.
- Reading the ChannelConfig.channelList property shall return a ChannelList object containing only this Channel object.
- Reading the ChannelConfig.currentChannel property, the currentChannel property of the video/broadcast object or the ApplicationPrivateData.currentChannel property shall return this Channel object.

- An AVAudioComponent object shall be created for each AVAudioComponent in the Discovered AIT where the values of the properties are taken from the elements of the same name in the corresponding audioComponent element in the Discovered AIT.
- An AVVideoComponent object shall be created for each AVVideoComponent in the Discovered AIT where the values of the properties are taken from the elements of the same name in the corresponding videoComponent element in the Discovered AIT.
- Calls to the getComponents method shall return all the AVComponents created using the information from the Discovered AIT, either those of the specified type (if a type was specified in the call to the method) or all of them (if the type specified in the call to the method was null or undefined).
- Calls to the getCurrentActiveComponents method shall return one of the AVComponent objects created using information from the Discovered AIT as defined in table 13.

Table 13: return value for getCurrentActiveComponents method

<table>
<thead>
<tr>
<th>Watermark State</th>
<th>componentType argument = COMPONENT_TYPE_VIDEO</th>
<th>componentType argument = COMPONENT_TYPE_AUDIO</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio watermark detected only</td>
<td>undefined</td>
<td>undefined</td>
<td>AVComponentCollection containing an AVAudioComponent matching detected audio watermark (See note 1)</td>
</tr>
<tr>
<td>Audio and unverified video watermarks detected only</td>
<td>undefined</td>
<td>undefined</td>
<td>AVComponentCollection containing an AVAudioComponent matching detected audio watermark (See note 1)</td>
</tr>
<tr>
<td>No watermark detected</td>
<td>undefined</td>
<td>undefined</td>
<td></td>
</tr>
<tr>
<td>Unverified video watermark detected only</td>
<td>undefined</td>
<td>undefined</td>
<td>AVComponentCollection containing an AVVideoComponent matching detected video watermark (See note 1)</td>
</tr>
<tr>
<td>Verified video watermark detected only</td>
<td>AVComponentCollection containing an AVVideoComponent matching detected video watermark (See note 1)</td>
<td>undefined</td>
<td></td>
</tr>
<tr>
<td>Audio and verified video watermarks detected</td>
<td>AVComponentCollection containing an AVVideoComponent matching detected audio watermark (See note 1)</td>
<td>AVComponentCollection containing an AVAudioComponent matching detected audio watermark (See note 1)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The AVComponent matching a detected watermark is the one created from the AVComponent element in the XML AIT whose serverField element is equal to the server code in the detected VP1 watermark. This is the current component as selected in clause 6.4.2.4.2.
• When watermark state machine changes occur (loss, recovery or change of watermarks within the same service) and the application continues to run, the onSelectedComponentChanged/SelectedComponentChanged event shall be generated to provide updated component selection information in accordance with Table 13 above.

• Calls to the selectComponent and unselectComponent methods shall fail and no onSelectedComponentChanged/SelectedComponentChanged event shall be generated.

• While terminals may validate a Discovered AIT against the schema, there is no requirement to do this. XML AITs that fail validation may be considered ‘malformed inputs’ and discarded by the terminal as defined in clause 9.4.2.

• If the Discovered AIT includes a value that is outside the permitted range for a property then applications may get this value passed to them as-is.

• Calling the bindToCurrentChannel method for a video/broadcast object in the unrealized state shall succeed and result in the object transitioning through the Connecting state to the Presenting state.

• Calls to the setChannel methods shall always fail with an onChannelChangeError with error code 11 (“insufficient resources”), except as follows;
 - calls with a value of null for the channel argument shall transition a broadcast-related application to broadcast-independent state as specified in clause 6.2.2.6.1 of TS 102 796 [1].
 - calls where the channel argument is a Channel object created from a Discovered AIT shall behave as defined in clause 6.3.4 of the present document.

• Calls to the prevChannel and nextChannel methods shall always fail with an onChannelChangeError with error code 11 (“insufficient resources”).

• Calls to the stop method shall cause audio and video from the watermarked content source to stop being displayed (while watermark detection from the source content continues). Calls to the release method shall have no effect

• Terminals are not required to support scaling video received over HDMI or may only support it under some circumstances (e.g. support scaling HD but not UHD) (see the scaling attribute in clause 10.2.2). On such terminals, the video/broadcast object shall always be in fullscreen mode and hence the following shall apply;
 - The fullscreen property shall always return true.
 - The onFullScreenChangeEvent shall not be fired.
 - Calls to the setFullScreen method with the false argument are silently ignored.
 - The width and height properties shall be read-only.

• On terminals that do support scaling video received over HDMI, full screen mode and the related APIs listed above shall be supported as specified.

• Reading the playState property and the posting of onPlayStateChange events shall work as specified.

• If an HbbTV application is running and the terminal detects a change in the channel received such that the application is allowed to continue running according to the application lifecycle then an onChannelChangeSucceeded event shall be fired.

• Calls to the createChannelObject methods shall succeed or fail as specified in the description of those methods.

NOTE: Cable, satellite or terrestrial tuners may be disabled when the user selects the HDMI input on a TV set. If this is the case then calls to these methods will fail as if no tuner was present matching the type requested for the channel.
9.2 Use of MediaSynchroniser API with watermarking

Terminals supporting application discovery over broadband using watermarking for an input (e.g. HDMI, broadcast, OTT, IPTV) shall support the use of the watermark media timeline defined in clause 6.4.2.4 as a type of timeline for MediaSynchroniser operations when that input is selected. The timeline selector for the watermark media timeline shall be "urn:hbbtv:sync:timeline:wm". Watermark media time shall be expressed as an integer number of 1 millisecond ticks in the range \([0,2^{53}-1]\).

NOTE: This is JavaScript Number.MAX_SAFE_INTEGER.

If both the terminal and the broadcaster support application discovery over broadband using watermarking, applications shall be able to read the value of \(\text{currentTime}\) using the timeline selector above regardless of how the application was discovered.

Terminals shall support use of the watermark media timeline as the timeline for the master media of the MediaSynchroniser object when the master media is a video/broadcast object associated with presentation of content from which the terminal is performing application discovery using watermarking.

This clause extends the functionality specified in clause 13.4 of TS 102 796 [1] (Timelines and timestamping), enabling synchronization of applications to watermarked media (e.g. via access to the \(\text{currentTime}\) property of a MediaSynchroniser object).

The present document does not require support for use of the watermark media timeline in the context of either multi-stream synchronization or inter-device synchronization.

9.3 Use of Stream Events API

9.3.1 Stream events in the presence of DVB service information

When the broadcast does not carry an AIT, then it is also unlikely that other broadcast-carried HbbTV® functions like application transport with DSM-CC, stream events, etc., will be available in the video broadcast. Methods and properties related to these functions will be handled the same way as in ETSI TS 102 796 [1].

Note also that HbbTV® applications that are discovered using the method described in the present document can be tailored to the discovery method, so that they can take into account - and work around - the inherent limitations of this method.

9.3.2 Stream events with application discovery using ATSC3 watermarking

9.3.2.1 General

Applications where \(\text{Application.lifecycleControl}\) is "xmlait-atsc3" shall be able to register for stream events and receive stream events when detected according to clauses 9.3.2.2 and 9.3.2.3. This applies regardless of whether an application is an autostart application whose launch was initiated by the HbbTV terminal or a present application whose launch was initiated by another HbbTV application.

Broadcast-independent applications (including ones that were previously broadcast-related but changed) shall not be able to register for stream events and registrations shall be cancelled on changing from broadcast-related to broadcast-independent.

9.3.2.2 Events delivered in video watermarks

The \(\text{dynamic_event_message()}\) defined in ATSC A/336 [9] supports delivery of stream events in video watermarks that conform to the structure of events used in ATSC 3.0 broadcast delivery protocols. For HbbTV, the A/336 protocol is extended to define the syntax and bitstream semantics of the Video Watermark Event Message as given in Table 14 and the parameter descriptions that follow.
Table 14: Bit Stream Syntax for the HbbTV Dynamic Event Message

<table>
<thead>
<tr>
<th>Syntax</th>
<th>No. of Bits</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic_event_message() {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delivery_protocol_type</td>
<td>4</td>
<td>uimsbf</td>
</tr>
<tr>
<td>reserved</td>
<td>4</td>
<td>'1111'</td>
</tr>
<tr>
<td>if (delivery_protocol_type == '3') {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>event_name_length (N1)</td>
<td>8</td>
<td>uimsbf</td>
</tr>
<tr>
<td>event_name</td>
<td>8*N1</td>
<td></td>
</tr>
<tr>
<td>data_length (N2)</td>
<td>8</td>
<td>uimsbf</td>
</tr>
<tr>
<td>data</td>
<td>8*N2</td>
<td></td>
</tr>
</tbody>
</table>

delivery_protocol_type: This 4-bit field shall signify the service to which the Dynamic Event applies. Table 15 describes the encoding of this field.

Table 15: **delivery_protocol_type** field Encoding

<table>
<thead>
<tr>
<th>delivery_protocol_type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HbbTV</td>
</tr>
</tbody>
</table>

event_name_length: This 8-bit integer shall give the length of the event_name field in bytes.

event_name: This field shall convey the name of the stream event.

data_length: This 8-bit integer shall give the length of the data field in bytes.

data: This field shall contain the data of the stream event.

The following constraints apply:

- The sum of the values of the **event_name_length** and **data_length** fields shall be less than or equal to 77 (bytes) for 1X video watermark emission format (clause 5.4 of ATSC A/335 [13]) and shall be less than or equal to 197 (bytes) for 2X video watermark emission format (clause 5.5 of ATSC A/335 [13]).

When the watermark state is either "Verified video watermark detected only" or "Audio and verified video watermarks detected", the terminal shall deliver Video Watermark Event Messages present in video watermarks to broadcaster applications using the DSM-CC stream event API specified in clause 8.2.1 of TS 102 796 [1] upon their detection. Video watermark event messages shall be discarded without being delivered if the watermark state is either "Audio and unverified video watermarks detected" or "Unverified video watermark detected" or if the contents of the event_name in the dynamic event message do not match the eventName argument in a call to addStreamEventListener.

The targetURL associated with the video watermark event stream shall be urn:hbbtv:streamevent:a336:video. The **event_name** and **data** fields of the Video Watermark Event Message shall be used by the terminal as the source for populating the name and data elements of the DSM-CC StreamEvent class. The text property of the StreamEvent object shall contain the contents of the data field of the Video Watermark Event Message as a string assuming UTF-8 as the encoding. Bytes that cannot be transcoded into a Unicode character are skipped.

NOTE 1: Application developers should be aware that in some circumstances an attacker may be able to modify the video signal including the data in the Video Watermark Event Message. Applications shall not use this data in a way that would result in it being executed by the browser. Applications should be written to be tolerant of incorrectly formatted data or values which are outside the expected range without hanging up or crashing.

For purposes of determining uniqueness of detected triggers, the terminal shall consider successively detected Video Watermark Event Messages as repeated instances (and deliver only one instance to the application) if the contents of their wm_message_block (see clause 5.1 of ATSC A/336 [9]) are identical.

StreamEvents with status "error" shall be dispatched when any of the following conditions apply.
• The terminal does not support monitoring for video watermarks in the content currently being presented by the video/broadcast object.

EXAMPLE 1: Terminals that do not support monitoring for video watermarks at all.

EXAMPLE 2: Terminals that support monitoring for video watermarks in content received over HDMI that do not support monitoring for video watermarks in content received over classical broadcast, over IPTV or over broadband when the video/broadcast object is presenting the latter content.

• The watermark state (see clause 6.2.1) changes from "Audio and verified video watermarks detected" to "Audio watermark detected only" or from "Verified video watermark detected only" to "No watermark detected".

NOTE 2: If the "loss of watermark" process is followed and the application continues to run then it will need to re-register for any stream events that are still appropriate.

The following conditions that are conceptually similar to a required error condition when the API is used with MPEG-2 transport streams shall not generate an error when used with watermarks as defined in this clause.

• The watermark state is currently "Audio watermark detected only"

• The eventName argument passed to the addStreamEventListener method cannot be found. (Terminals do not have a list of video watermark event names in use by a broadcast service).

9.3.2.3 Deriving stream events from VP1 payloads

Applications shall be able to register to be notified when the value of the query_flag field changes in an Audio Watermark Segment using the DSM-CC stream event API specified in clause 8.2.1 of TS 102 796 [1].

The target URL associated with the audio watermark query_flag event stream shall be urn:hbbtv:streamevent:a336:audio. The eventName argument shall be ignored.

When the terminal detects a change in the value of the query_flag field, a StreamEvent object shall be delivered to an application that has registered using the addStreamEventListener method as follows.

• The name property of the StreamEvent object shall contain the value of the server_field from the VP1 payload encoded as a decimal number.

NOTE 1: The above requirement is an intentional significant deviation from when this API is used with DSM-CC stream events from an MPEG-2 transport stream.

• The data property of the StreamEvent object shall contain the entire VP1 payload as defined in clause 5.2.3 of ATSC A/336 [9] encoded in hexadecimal.

• The text property of the StreamEvent object shall contain "".

• The status property of the StreamEvent object shall be as defined in TS 102 796 [1]. StreamEvents with status "error" shall be dispatched when any of the following conditions apply.
 - The terminal does not support monitoring for audio watermarks in the content currently being presented by the video/broadcast object.

EXAMPLE 1: A terminal supporting the present document that does not support monitoring for watermarks in content delivered by classical broadcast, by IPTV or by broadband when a video/broadcast object is presenting such content.

 - The watermark state (see clause 6.3.1) changes from "Audio and verified video watermarks detected" to "Verified video watermark detected only" or from "Audio watermark detected only" to "No watermark detected"

EXAMPLE2: If a query_flag change has been identified in a VP1 payload with domain_type equal to 0, server_field value equal to 1074976391, interval_field value equal to 7615, and query_flag equal to 1, then a StreamEvent object would be provided with name property equal to "1074976391", a data property equal to "1004B5A1C3B7F", a text property equal to "", and status property equal to "trigger".
The following conditions that are conceptually similar to a required error condition when the API is used with MPEG-2 transport streams shall not generate an error when used with watermarks as defined in this clause.

- The watermark state is "Verified video watermark detected only" or "Unverified video watermark detected" or "No watermark detected"

EXAMPLE 2: The content presented by the video/broadcast object is received over broadcast (not HDMI) and the terminal supports detecting watermarks in content received over broadcast.

EXAMPLE 3: The audio watermark has been temporarily lost but the application continues to run under the control of a verified video watermark.

NOTE 2: The definition of `query_flag` in ATSC A/336 [9] says that "A change in the value of this field between successive VP1 Payloads in a VP1 Audio Watermark Segment or between successive VP1 Message Groups in a VP1 Video Watermark Segment indicates that a Dynamic Event (as defined in A/337 [6]) is available from the Dynamic Event HTTP server." In the present document, it is the HbbTV application that is responsible for fetching something from a server and not the HbbTV terminal. What is fetched from the server may be anything mutually agreed between the HbbTV application and the server (which may be operated by the same organisation).

For purposes of determining uniqueness of detected triggers, the terminal shall consider each VP1 Payload detected from the audio watermark that conveys a change in the value of `query_flag` from the value detected in the previous VP1 Payload in the Audio Watermark Segment to indicate a unique event. No event shall be reported if `query_flag` does not change.

9.4 Reliability and resilience

9.4.1 User interaction

Terminals shall operate reliably in response to (rapid) user interaction. Terminals shall keep operating the application discovery over broadband mechanisms reliably in the following events:

For streams obtained from HDMI:

- Rapid appearance and disappearance of the video watermark (e.g. equivalent to opening and closing an STB interface or signal loss) where the audio watermark remains.
- Rapid appearance and disappearance of the video and audio watermark (e.g. equivalent to opening and closing an STB interface or signal loss).
 - Where the same server code is found when the watermark returns (e.g. equivalent to muting and unmuting the audio on the STB).
 - Where a different server code is found when the watermark returns (e.g. equivalent to changing the channel on the STB).
- Rapid appearance and disappearance of the audio watermark while the video watermark remains.
- Loss and restoration of HDMI input (e.g. user turns the set-top box off and on again).

For streams obtained using a (regular) tuner:

- Repeatedly switching between channels with a DNS entry corresponding to the DVB Service Information, and no watermarks and channels with no DNS entry corresponding to the DVB Service Information and no watermarks.
- Repeatedly switching between channels with a regular AIT and DVB Service Information to channels with DVB Service Information only.
9.4.2 Malformed or malicious inputs

Terminals shall be resilient to malformed, malicious inputs and/or operational errors that are likely to occur. Specifically, in the following circumstances, the terminal shall discard any malformed inputs and remain responsive to valid inputs in the future, including starting and stopping applications:

- Failed DNS CNAME requests for requests made according to clause 5.2
- DNS CNAME responses referring to non-existing servers for requests made according to clause 5.2.
- Incomplete AITs (e.g. due to server errors) after a successful HTTP download.
- Unavailable AITs (e.g. HTTP errors 404 or 500), for example caused by:
 - TLS authentication/verification failure.
 - Operational errors.
- When fetching an AIT larger than the supported size (see clause 10.2.1), the terminal is not expected to correctly download and/or process the AIT.

Specifically, terminals shall remain responsive to channel change, application termination requests, and remain able to discover applications over broadband according to section 5 in the following circumstances:

- Loss of watermark during DNS requests initiated according to clause 5.2.
- Loss of watermark while fetching an AIT as specified in clause 6.4.2.2.

9.4.3 Long-term use

On the application level, terminals shall reliably handle the following uses:

- An application rapidly switching back and forth between broadcast-independent and broadcast-related modes 200 times.

Terminals shall be resilient to transient error conditions that are likely to occur, as well as to conditions of low resource availability. Specifically, the terminal shall remain responsive to channel change, application termination requests in the following circumstances:

- On overflows in the watermark interval field, the continuity of the lifecycle of any running application is not expected.
- Discovering a new service, when the channel list is already full.

On power loss, terminals shall operate according to the present document where specified when power is returned. Specifically:

- AIT downloads which are in progress on loss of power shall not have an impact on the terminals ability to perform discovery of applications over broadband.

9.4.4 Watermarks and XML-AIT

Terminals shall remain able to discover applications over broadband according to the present document when:

- the VP1 payload query_flag field value is switched 200 times in a row.
- there are 200 discontinuities in the VP1 payload Interval Code field
- the VP1 payload Server Code is changed 200 times in a row

and also when

- either or both of the mediaTimeAnchor or the intervalFieldAnchor field in the XML-AIT are changed 200 times in a row
10 Capabilities

10.1 Display model

Video received via HDMI shall be displayed in the "Video plane" in the logical plane model defined in clause H.1 of the OIPF DAE specification [4]. Terminals may support displaying video received by broadband and video received by HDMI simultaneously in which case the video received by broadband shall appear in front of the video received by HDMI and behind any subtitles.

10.2 Terminal capabilities and functions

10.2.1 Minimum terminal capabilities

Terminals shall support XML AIT files whose size is less than or equal 256K Bytes. Terminals may support XML AIT files larger than this.

10.2.2 HbbTV® reported capabilities and option strings

The support of application discovery over broadband shall be indicated by the addition of one or more `<applicationDiscovery>` elements in the XML device capabilities as defined in clause A.2.1. For example:

```
<applicationDiscovery>urn:hbbtv:discovery:atsc3audio</applicationDiscovery>
<applicationDiscovery>urn:hbbtv:discovery:atsc3video</applicationDiscovery>
<applicationDiscovery>urn:hbbtv:discovery:dvbsi</applicationDiscovery>
```

Support for the application discovery based on DVB-SI as defined in clauses 5.3.1, 5.4.1 and 5.6.1 of the present document shall be indicated by `urn:hbbtv:discovery:dvbsi`.

Support for the application discovery based on the ATSC3 video watermark as used in the present document shall be indicated by `urn:hbbtv:discovery:atsc3video`. Support for the ATSC3 audio watermark as used in the present document shall be indicated by `urn:hbbtv:discovery:atsc3audio`.

NOTE: Clause 6.3.3 requires that `urn:hbbtv:discovery:atsc3audio` be indicated if `urn:hbbtv:discovery:atsc3video` is indicated but not vice-versa.

Support for running applications in combination with video and audio received via HDMI shall be indicated by the addition of a single `<hdmi>` element in the XML device capabilities as defined in clause A.2.1. For example:

```
<hdmi broadbandOverlay="false" monitoringWhileBroadband="true" scaling="true"/>
```

The `broadbandOverlay` attribute shall indicate if broadband delivered video can overlay video delivered via HDMI (`true`) (e.g. using broadband delivered video as picture in picture overlaying HDMI video) or not (`false`) (i.e. display of HDMI video stops when broadband delivered video is shown).

The `monitoringWhileBroadband` attribute shall indicate if monitoring HDMI delivered content for watermarks is supported while broadband delivered video and audio is being presented (`true`) or not (`false`).

NOTE: If this attribute is false then applications may need to make themselves broadcast-independent prior to playing broadband-delivered video in order to avoid being stopped.

The `scaling` attribute shall indicate if video received by HDMI can be scaled to fit into a video/broadcast object that is not in fullscreen mode (`true`) or not (`false`). If scaling is supported but with restrictions that are not compatible with those for "video scaling" in clause 10.2.1 of TS 102 796 [1] then `false` shall be returned.

The electronic attachments to the present document (see annex B) include the XML schema for the capabilities and an example which using the extended capabilities that validates using that schema.
11 Security

11.1 Introduction

Application discovery over broadband has been designed to limit risks posed by bad actors. Some known security risks are listed here and recommendations for their mitigation in deployments provided.

11.2 Modification of DVB Service Information or the VP1 Payload of the watermark

11.2.1 Risks

When an application is retrieved via broadband, the terminal determines the hostname of the Broadcaster DNS Root via DNS based on either DVB service information received from the tuner or the server_field of a VP1 payload retrieved from an audio watermark.

Neither received DVB service info nor detected VP1 payload data can be authenticated by the terminal. As a result, if an intermediary has modified the information to convey values that identify a different service for which application discovery is supported, an application associated with a different service from the one being received will be discovered. If it is modified to values for which application discovery is not provided (or is removed altogether), then application discovery will fail.

The potential for harm as a result of such modifications is limited by the fact the universe of Broadcaster DNS Root server hostnames that can be identified is restricted to those listed in the hbbtvdns.org authoritative nameserver records. Modification of DVB service information or VP1 payload data cannot result in retrieval of a Broadcaster DNS Root server hostname outside of this universe.

11.2.2 Applicable Application Discovery Methods

- Application Discovery using DVB Service Info
- Application Discovery using Watermarking

11.2.3 Mitigation Techniques

The risk of DVB service info or VP1 payload data modification causing a malicious application being discovered can be mitigated by ensuring that the operational processes of the administrator of the hbbtvdns.org domain provide adequate safeguards to prevent the inclusion of DNS records that identify compromised or unauthorized Broadcaster DNS Root servers.

11.3 Modification of dynamic event messages carried in watermarks

11.3.1 Risks

During application discovery using watermarks, dynamic event messages carried in the watermarks may be delivered to running broadcaster applications. The watermark-based dynamic event message delivery protocol does not provide message authentication by the terminal. If an intermediary has modified the dynamic event message, the application may receive a different dynamic event message from that which was transmitted or no dynamic event message at all.

11.3.2 Applicable Application Discovery Methods

- Application Discovery using Watermarking
11.3.3 Mitigation Techniques

Broadcasters can mitigate the risk of dynamic event message modification by an intermediary by implementing dynamic event message authentication in in their HbbTV application. Methods for dynamic event message authentication include carriage of message authentication codes in dynamic events message watermarks or alternately implementation of a message authentication protocol between the broadcaster application and a broadcaster server.

11.4 Attacks on DNS Resolution

11.4.1 Risks

When an application is retrieved via broadband, the terminal discovers the hostname of the Broadcaster DNS Root server and AIT server using DNS resolution. The specified DNS resolution protocol does not by provide a mechanism for the terminal to authenticate the hostnames received via this protocol in a manner that would protect against receiving malicious hostnames from a compromised DNS recursive resolver or a man-in-the-middle of the DNS resolution process. This can lead to terminals retrieving XML AITs for malicious applications.

11.4.2 Applicable Application Discovery Methods

- Application Discovery using DVB Service Info
- Application Discovery using Watermarking

11.4.3 Mitigation Techniques

The HbbTV organization can mitigate the risk of compromised DNS resolution by ensuring that the administrator of the hbbtvdns.org domain implement the DNSSEC protocol (RFC 4033 [i.4], 4034 [i.5], 4035 [i.6]).

Terminal manufacturers are advised to implement DNSSEC authentication (RFC 4033, 4034, 4035) of DNS resource records received during broadcaster DNS Root server and AIT server hostname resolution.

Terminals may employ XML DSIG (as specified in clause 7.1.1) to allow rejection of any unauthorized XML AITs retrieved from an attacker-controlled AIT server. The certificates and/or keys to validate such signatures are outside the scope of the present document.

12 Privacy

12.1 Introduction

Application discovery over broadband has been designed to protect the privacy of the end user. Service information and server addresses are generally stored within the terminal and DNS transactions are performed asynchronous to viewing activity in order to reduce information observable by third-parties. The information that is potentially disclosed to channel providers (broadcasters) on using a Discovered AIT is comparable to what is disclosed when using an AIT signalled in the broadcast.

Some known privacy risks are listed here and recommendations for their mitigation in deployments provided.

12.2 Application Retrieval via Broadband

12.2.1 Risks

When an application is retrieved via broadband, the terminal resolves the hostname of the application server using DNS and retrieves the application from the application server using HTTP over TLS.
If the hostname of an application server is uniquely associated with a single broadcast service, the DNS resolution of the hostname by the terminal could be used by the DNS resolver operator or a network eavesdropper to determine that the terminal is viewing the service.

Similarly, if the IP address of an application server is uniquely associated with a single broadcast service, the HTTP over TLS traffic between the server and the terminal could be used by the network eavesdropper to determine that the terminal is viewing the service.

12.2.2 Applicable Application Discovery Methods

- Application Discovery using Broadcast AIT
- Application Discovery using DVB Service Info
- Application Discovery using Watermarking

12.2.3 Mitigation Techniques

Broadcasters can mitigate this risk by avoiding the use of hostnames or IP addresses with application servers that are uniquely associated with a single broadcast service.

12.3 AIT Retrieval via Broadband

12.3.1 Risks

When an AIT is retrieved via broadband, the terminal resolves the hostname of the AIT server using DNS and retrieves the AIT from the AIT server using HTTP over TLS.

If the hostname of an AIT server is uniquely associated with a single broadcast service, the DNS resolution of the hostname by the terminal could be used by the DNS resolver operator or a network eavesdropper to determine that the terminal is viewing the service.

Similarly, if the IP address of an AIT server is uniquely associated with a single broadcast service, the HTTP over TLS traffic between the server and the terminal could be used by the network eavesdropper to determine that the terminal is viewing the service.

12.3.2 Applicable Application Discovery Methods

- Application Discovery using DVB Service Info
- Application Discovery using Watermarking

12.3.3 Mitigation Techniques

Broadcasters can mitigate this risk by avoiding the use of hostnames or IP addresses for AIT servers that are uniquely associated with a single broadcast service.

12.4 Authoritative FQDN Resolution Using Watermarking

12.4.1 Risks

Authoritative FQDN resolution using data from watermarks is generally performed asynchronously to the viewing of the service carrying that watermark. However, the first time a terminal detects a watermark conveying a specific server_field value, it will perform DNS record resolution using that value. The DNS resolution of the Authoritative FQDN by the terminal could be used by the DNS resolver operator or a network eavesdropper to determine that the terminal is viewing a particular service.
12.4.2 Applicable Application Discovery Methods

- Application Discovery using Watermarking

12.4.3 Mitigation Techniques

Broadcasters can mitigate this risk by using the large domain format of the VP1 payload and changing server_field values in their broadcast service infrequently (e.g. not more than once per calendar year).

Annex A (normative):

OIPF specification profile

A.1 Detailed section-by-section definition for volume 5

Table A.1 defines clauses of the OIPF DAE specification [4] that are required by the present document but which are either not required at all by ETSI TS 102 796 [1] or where the present document introduces additional requirements beyond what is required by the OIPF DAE specification [4]. Where a class or object is partly required by ETSI TS 102 796 [1], the properties and/or methods and/or events required by [1] are required by the present document. Only additional requirements are listed here. Methods properties and events that are not required by ETSI TS 102 796 [1] and not required by the present document should not be supported unless required by another specification.

<table>
<thead>
<tr>
<th>Section, sub-section</th>
<th>Reference in DAE [4]</th>
<th>Status in HbbTV®</th>
<th>Status in the present document</th>
</tr>
</thead>
<tbody>
<tr>
<td>The application/oipfApplicationManager embedded object</td>
<td>7.2.1</td>
<td>M(*)</td>
<td>The watermarkState property defined in clause 8.1 shall be supported.</td>
</tr>
<tr>
<td>The Application class</td>
<td>7.2.2</td>
<td>M(*)</td>
<td>The lifecycleControl property defined in clause 8.1 shall be supported.</td>
</tr>
</tbody>
</table>

A.2 Modifications, extensions and clarifications to volume 5

A.2.1 Extensions to the OIPF-defined capability negotiation mechanism

The following schema is an extension of the schema defined by clause A.2.15 of TS 102 796 [1] which in turn extends annex F of the OIPF DAE specification [4]. Extensions relative to that schema are shown underlined. This is purely an editorial convention and has no technical impact. The normative definition of this schema is found in the electronic attachments - see Annex B of the present document.

```xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema xmlns:hbbtv="urn:hbbtv:config:oiffoifCapabilities:2018-1"
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  targetNamespace="urn:hbbtv:config:oiffoifCapabilities:2018-1"
  elementFormDefault="qualified"
  attributeFormDefault="unqualified">
  <xs:import namespace="urn:oipf:config:oiffoifCapabilities:2011-1"
               schemaLocation="oipf\config-oiffoifCapabilities.xsd"/>
  <xs:import schemaLocation="oipf\imports/ce-html-profiles-1-0.xsd"/>
  <xs:element name="profilelist" type="hbbtv:profileListType"/>
  <xs:complexType name="profileListType">
    <xs:sequence>
      <xs:element name="ui_profile" type="hbbtv:uiProfileType" maxOccurs="unbounded"/>
      <xs:element name="audio_profile" type="hbbtv:audioProfileType" minOccurs="0" maxOccurs="unbounded"/>
      <xs:element name="video_profile" type="hbbtv:videoProfileType" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>
</xs:schema>
```
Annex B (normative): Electronic attachments

The present document includes an electronic attachment ts_103464v010201p0.zip with the following contents.

- **hbbwm.xsd**
 This is the normative XML schema file whose text is included informatively in clause 7.1.2 of the present document.

- **adb-xml-ait-watermark-example**
 This is an example XML AIT including the XML schema extensions defined in clause 7.1.2 of the present document and which validates using the XML schema.

- **hbbtv-capabilities-2019-1.xsd**
 This is the normative XML schema file whose text is included informatively in annex A.2.1 to the present document.

- **example-adb**
 This is an example XML capabilities including the XML schema extensions defined in clauses 10.2.2 and A.2.1 of the present document and which validates using the schema.

For convenience, the electronic attachment also includes the following dependencies from other ETSI specifications.

- **mis_xmlait.xsd** from TS 102 809 [6]
- **hbbtv_application_descriptor.xsd** from TS 102 796 [1]

The following other XML schema dependencies can be found in the electronic attachments for TS 102034 [5].

- **sdns_v1.4r13.xsd**
- **sdns_v1.5r25b.xsd**
- **tva_metadata_3-1_v131.xsd**
- **tva_metadata_3-1_v171.xsd**
- **tva_mpeg7.xsd**
- **tva_mpeg7_2008.xsd**
- **xml.xsd**
Annex C (informative):
Sequence diagrams

C.1 Application discovery in the presence of DVB service information

Figure C.1 illustrates the process of application discovery over broadband using in the presence of DVB service information. That this is a simplified diagram and some aspects are omitted in the interests of clarity. This diagram is not a substitute for the normative text in the specification.
The following table provides an explanation of the individual steps in the diagram. The rows in the table are a 1:1 correspondence with the messages / events in the sequence diagram and are in the same order (top to bottom) as the messages / events in the diagram.

Table C.1: Sequence diagram events / messages for DVB-SI

<table>
<thead>
<tr>
<th>Step</th>
<th>Between</th>
<th>Label</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TV->TV</td>
<td>for each service in service list, for each new service added to the list, for each service in the list with name or country setting change, or for each expired record in the DNS resource record cache</td>
<td>See clause 5.2</td>
</tr>
<tr>
<td>2</td>
<td>TV->DNS resolver</td>
<td>DNS request for ???hbbtvdns.org.</td>
<td>See clause 5.4.1</td>
</tr>
<tr>
<td>3</td>
<td>DNS resolver-->hbbtvdns.org</td>
<td>DNS request for ???hbbtvdns.org.</td>
<td>See clause 5.4.1</td>
</tr>
<tr>
<td>4</td>
<td>hbbtvdns.org-->DNS resolver</td>
<td>DNS response containing authoritative FQDN for service.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DNS resolver-->TV</td>
<td>DNS response containing authoritative FQDN for service</td>
<td></td>
</tr>
<tr>
<td>end of loop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>loop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>User->TV</td>
<td>Select TV channel with service name ???</td>
<td>Tune to channel</td>
</tr>
<tr>
<td>7</td>
<td>Broadcaster->TV</td>
<td>Content via DVB service</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TV->User</td>
<td>Content of the selected TV channel</td>
<td></td>
</tr>
<tr>
<td>alt if TV has a valid DNS resource record for the authoritative FQDN cached for this service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TV->DNS resolver</td>
<td>Request to resolve host name of Broadcaster AIT server</td>
<td>According to normal internet specifications</td>
</tr>
<tr>
<td>10</td>
<td>DNS resolver->TV</td>
<td>IP address of Broadcaster AIT server</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TV->Broadcaster</td>
<td>HTTP GET for XML AIT</td>
<td>See clause 5.6.</td>
</tr>
<tr>
<td>12</td>
<td>Broadcaster->TV</td>
<td>XML AIT identifying autostart application</td>
<td></td>
</tr>
<tr>
<td>alt if the Discovered AIT is determined to be used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TV->TV</td>
<td>Stop any already running application</td>
<td>According to regular HbbTV application lifecycle.</td>
</tr>
<tr>
<td>14</td>
<td>TV->TV</td>
<td>Start autostart application</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TV->DNS resolver</td>
<td>Request to resolve host name for broadcaster app server</td>
<td>According to normal internet specifications</td>
</tr>
<tr>
<td>16</td>
<td>DNS resolver->TV</td>
<td>IP address for broadcaster app server</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>TV->Broadcaster</td>
<td>Requests for first page of application and referenced resources</td>
<td>As for any HbbTV application</td>
</tr>
<tr>
<td>18</td>
<td>Broadcaster->TV</td>
<td>HTML, JavaScript, Images, (etc)</td>
<td></td>
</tr>
<tr>
<td>else If signalled autostart app is already running from previous service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TV->TV</td>
<td>send onPlayStateChange and onChannelChangeSucceeded, events,update currentChannel property, etc</td>
<td>As for regular HbbTV broadcast-related applications that continue to run after a channel change.</td>
</tr>
<tr>
<td>end of “If signalled autostart app is not already running from previous service”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TV->Broadcaster</td>
<td>Any app specific communication</td>
<td>Same as for a regular HbbTV application.</td>
</tr>
<tr>
<td>21</td>
<td>Broadcaster->TV</td>
<td>Response to app specific communication</td>
<td>HbbTV application.</td>
</tr>
<tr>
<td>else if the Discovered AIT is determined not to be used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TV->TV</td>
<td>Stop any already running application</td>
<td></td>
</tr>
<tr>
<td>else If TV does not have a valid DNS resource record for the authoritative FQDN cached for this service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TV->TV</td>
<td>Stop any already running application</td>
<td>Same as for a regular HbbTV broadcast-related application when the channel is changed to one with no AIT.</td>
</tr>
</tbody>
</table>

End of loop
C.2 Application discovery using ATSC 3 watermarks

Figure C.2 illustrates the process of application discovery over broadband using ATSC3 watermarks. That this is a simplified diagram and some aspects are omitted in the interests of clarity – e.g. stopping applications when changing to a broadcast that does not contain a watermark. This diagram is not a substitute for the normative text in the specification.
Figure C.2: Sequence diagram for application discovery over broadband using ATSC3 watermarks

The following table provides an explanation of the individual steps in the diagram. The rows in the table are a 1:1 correspondence with the messages / events in the sequence diagram and are in the same order (top to bottom) as the messages / events in the diagram.

Table C.2: Sequence diagram events / messages for watermarking
<table>
<thead>
<tr>
<th>STEP</th>
<th>Between</th>
<th>Label in sequence diagram</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>loop</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TV->TV</td>
<td>for each server_field in server_field cache, each server_field added to server_field cache, or for each expired record in the DNS resource record cache.</td>
<td>See clause 5.2.</td>
</tr>
<tr>
<td>2</td>
<td>TV->DNS resolver</td>
<td>DNS request for ??? a336.watermark.hbbtvdns.org.</td>
<td>See clause 5.4.2</td>
</tr>
<tr>
<td>3</td>
<td>DNS resolver->hbbtvdns.org</td>
<td>DNS request for ??? a336.watermark.hbbtvdns.org.</td>
<td>See clause 5.4.2</td>
</tr>
<tr>
<td>4</td>
<td>hbbtvdns.org->DNS resolver</td>
<td>DNS response containing authoritative FQDN for service.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DNS resolver->TV</td>
<td>DNS response containing authoritative FQDN for service.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>end loop</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>User->TV</td>
<td>Select HDMI input with STB connected</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>STB->TV</td>
<td>Current output of STB</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TV->User</td>
<td>Current output of STB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>loop</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TV->TV</td>
<td>Wait for watermark to appear, change or be removed</td>
<td>On a TV supporting the watermark option of the present document, monitoring for watermarks would be active whenever an HDMI input is selected.</td>
</tr>
<tr>
<td>10</td>
<td>User->STB</td>
<td>Select TV channel</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Broadcaster->STB</td>
<td>Content containing watermark via DVB-C/S/T or IPTV</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>STB->TV</td>
<td>Content containing watermark via HDMI</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TV->User</td>
<td>Content from STB</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TV->TV</td>
<td>Detect watermark and extract payload</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>alt If server_field is not in server_field cache</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TV->TV</td>
<td>add the server_field to server_field cache and resolve Authoritative FQDN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>alt If TV has a valid DNS resource record for the authoritative FQDN cached for the detected server code</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>TV->DNS resolver</td>
<td>Request to resolve host name of Broadcaster AIT server</td>
<td>According to normal internet specifications</td>
</tr>
<tr>
<td>17</td>
<td>DNS resolver->TV</td>
<td>IP address of Broadcaster AIT server</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TV->Broadcaster</td>
<td>HTTP GET for XML AIT</td>
<td>See clause 5.6.</td>
</tr>
<tr>
<td>19</td>
<td>Broadcaster->TV</td>
<td>XML AIT identifying autostart application</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>alt If server code from watermark is found in a component in the XML AIT</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TV->TV</td>
<td>Establish watermark media timeline</td>
<td>See clause 6.4.2.4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alt If XML AIT is valid for current position on watermark media timeline</td>
<td>According to regular HbbTV application lifecycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alt If signalled autostart app is not already running from previous service</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>TV->TV</td>
<td>Stop any already running application</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TV->TV</td>
<td>Start autostart application</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TV->DNS resolver</td>
<td>Request to resolve host name for broadcaster app server</td>
<td>As for any HbbTV application delivered over broadband.</td>
</tr>
<tr>
<td>24</td>
<td>DNS resolver->TV</td>
<td>IP address for broadcaster app server</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>TV->Broadcaster</td>
<td>Requests for first page of application and referenced resources</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Broadcaster->TV</td>
<td>HTML, JavaScript, Images, (etc)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>else If signalled autostart app is already running from previous service and has a v/b object</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>27</td>
<td>TV->TV</td>
<td>send onPlayStateChange and onChannelChangeSucceeded events, update currentChannel property, (etc)</td>
<td>As for regular HbbTV broadcast-related applications that continue to run after a channel change.</td>
</tr>
</tbody>
</table>
| | | | end of "If signalled autostart app is not already running from previous service"
| 28 | TV->Broadcaster | Any app specific communication | Same as for a regular HbbTV application. |
| 29 | Broadcaster->TV | Response to app specific communication | |
| | | | else If XML AIT is not valid for current position on watermark media timeline |
| 30 | TV->TV | Stop any already running application | Same as for a regular HbbTV broadcast-related application when the channel is changed to one with no AIT. |
| | | | end of "If XML AIT is not valid for current position on watermark media timeline"
| | | | else If server code from watermark is not found in a component in the XML AIT |
| 31 | TV->TV | Stop any already running application | Same as for a regular HbbTV broadcast-related application when the channel is changed to one with no AIT. |
| | | | end of "If server code from watermark is not found in a component in the XML AIT"
| | | | end of "TV has a valid Authoritative FQDN record cached for the detected server code"

Annex D (informative):
Change History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Information about changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2016</td>
<td>0.75</td>
<td>Reformatted for ETSI template</td>
</tr>
</tbody>
</table>

History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.1.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>